Plants whose flowers open at night but remain open during the day also attract diurnal flower visitors, potentially boosting their pollination rates and providing resources that can support diverse arthropod communities. The rough-leaf velvetseed, Guettarda scabra (Rubiaceae), is an evergreen shrub that thrives only in the imperiled pine rockland habitat in south Florida. Its white, tubular, and fragrant flowers open during late afternoon, exhibiting traits strongly associated with the attraction of nocturnal hawkmoths (Sphingidae). Flowers of G. scabra remain open until the following morning, becoming available to a wider array of visitors, bringing into question the expectation that sphingophilous flowers are visited mainly by hawkmoths. To evaluate whether the flowers of G. scabra are mainly visited by nocturnal hawkmoths and understand the role of this plant in the pine rockland habitat, we characterized the arthropod fauna associated with its flowers during the morning, evening, and at night. We found that most flower visitors were diurnal insects of the orders Hymenoptera and Lepidoptera, although we observed other arthropod groups too. Visitation at night was dominated by two species of hawkmoths. Nectar was the main resource used by the arthropod community during this study. Legitimate visitation and nectar-robbing were the behaviors most frequently observed among the flower visitors. Our results suggest that flowers of the night-blooming G. scabra constitute an important food source for both diurnal and nocturnal arthropod fauna in the fire-dependent pine rocklands of southern Florida. Our study provides novel data to support efforts to conserve and protect pine rocklands and the plants and animals that inhabit them.
Male Tettigoniidae emit sound to attract conspecific females. The sound is produced by stridulation. During stridulation the forewings open and close, but it is during the closing stroke that the scraper contacts the file teeth to generate the predominant sound components, which are amplified by adjacent wing cells specialized in sound radiation. The sounds usually exceed the sonic boundary and might occur above 40 kHz, reaching extreme ultrasonic frequencies of 150kHz in some species. Here we test the hypothesis that Tettigoniidae species should prefer microhabitats that favour efficient signal transmission, i.e. that there is a relationship of sound frequency with the vertical distribution of the species (from ground to canopy) at Gorgona National Natural Park, Colombia. We sampled 16 trees and four different altitudinal levels between 1 and 20m above the understory vegetation. We placed collecting blankets separated by vertical distances of 5m, and knocked insects down using the technique known as fogging. We found no correlation between vertical distribution and carrier frequency, but there was a preference for open spaces (below the canopy and above the understory) in species using extreme ultrasound. This is the first quantitative description of the vertical distribution in neotropical species of the family Tettigoniidae and its relationship to the calling song frequency. Rev. Biol. Trop. 62 (Suppl. 1): 289-296. Epub 2014 February 01.
When some plants are defoliated, they may suffer by reaching a smaller final size than if they had not been damaged. Other plants may compensate for damage, ending up the same size as if they had not been damaged. Still, others may overcompensate, ending up larger after defoliation than if they had been spared from damage. We investigated the response of Senna species (Fabaceae) to defoliation, comparing two native and several ornamental congeners, all of which grow locally in southern Florida. Many Senna spp. bear foliar nectaries as nutritional resources for beneficial insects that may, in exchange, protect them from herbivores. We grew five species from seed and subjected them to three levels of defoliation for a period of several months to measure effects of leaf area removal on plant height, number of leaves, and number of extrafloral nectaries. Only three of five species displayed shorter plant heights with greater levels of damage. Two species produced fewer new leaves with moderate to severe defoliation. In only one species, the number of extrafloral nectaries decreased with defoliation, suggesting that while extrafloral nectar production may be an inducible defense in some species, producing more nectaries in response to damage does not occur in these Senna species.
Arboreal ants of Gorgona National Park (Pacific of Colombia). Despite the strong microclimatic fluctuations, scarcity of nesting sites and unpredictable prey availability in open environments, ants are the dominant invertebrates in the tropical forest canopy. This study focused on the arboreal ants in Gorgona National Park, Colombia, a rainforest ecosystem (27ºC, 6 000mm average annual rainfall). in November 2007, 16 trees were sampled by fogging them with a biodegradable pyrethroid insecticide in four levels between 1 and 15 m above the understory vegetation. We found 53 species of Formicidae (24 genera and six subfamilies): two subfamilies had the most species: Formicinae (20 species) and Myrmicinae (17). The most abundant were arboreal species of Azteca, Dolichoderus (D. bispinosus and D. lutosus), Camponotus (C. atriceps, C. claviscapus, C. championi, C. excisus) and Crematogaster (C. brasiliensis, C. carinata, C. curvispinosa). Some species that are common at ground level (Wasmannia auropunctata and Camponotus sericeiventris) were collected up to a height of 15 m. We remark the capture of Nesomyrmex pittieri, Crematogaster stolli, Cephalotes basalis, Anochetus bispinosus and Stigmatomma mystriops, species rarely found using conventional methods. Rev. Biol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.