The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1) and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic), greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular heterogeneity and the hypoxia map in the tumor niche, along with the adjoining and systemic effects of oxidative stress-based therapies.
This review emphasizes the role of oxidative stress in diabetic nephropathy, acting as trigger, modulator, and linker within the complex network of pathologic events. It highlights key molecular pathways and new hypothesis in diabetic nephropathy, related to the interferences of metabolic, oxidative, and inflammatory stresses. Main topics this review is addressing are biomarkers of oxidative stress in diabetic nephropathy, the sources of reactive oxygen species (mitochondria, NADPH-oxidases, hyperglycemia, and inflammation), and the redox-sensitive signaling networks (protein kinases, transcription factors, and epigenetic regulators). Molecular switches deciding on the renal cells fate in diabetic nephropathy are presented, such as hypertrophy versus death choices in mesangial cells and podocytes. Finally, the antioxidant response of renal cells in diabetic nephropathy is tackled, with emphasis on targeted therapy. An integrative approach is needed for identifying key molecular networks which control cellular responses triggered by the array of stressors in diabetic nephropathy. This will foster the discovery of reliable biomarkers for early diagnosis and prognosis, and will guide the discovery of new therapeutic approaches for personalized medicine in diabetic nephropathy.
Background and Aims. Hepatocellular carcinoma (HCC) remains a leading cause of death by cancer worldwide. Computerized diagnosis systems relying on novel imaging markers gained significant importance in recent years. Our aim was to integrate a novel morphometric measurement—the fractal dimension (FD)—into an artificial neural network (ANN) designed to diagnose HCC. Material and Methods. The study included 21 HCC and 28 liver metastases (LM) patients scheduled for surgery. We performed hematoxylin staining for cell nuclei and CD31/34 immunostaining for vascular elements. We captured digital images and used an in-house application to segment elements of interest; FDs were calculated and fed to an ANN which classified them as malignant or benign, further identifying HCC and LM cases. Results. User intervention corrected segmentation errors and fractal dimensions were calculated. ANNs correctly classified 947/1050 HCC images (90.2%), 1021/1050 normal tissue images (97.23%), 1215/1400 LM (86.78%), and 1372/1400 normal tissues (98%). We obtained excellent interobserver agreement between human operators and the system. Conclusion. We successfully implemented FD as a morphometric marker in a decision system, an ensemble of ANNs designed to differentiate histological images of normal parenchyma from malignancy and classify HCCs and LMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.