The optical quality of an image depends on both the optical properties of the imaging system and the physical properties of the medium in which the light travels from the object to the final imaging sensor. The analysis of the point spread function of the optical system is an objective way to quantify the image degradation. In retinal imaging, the presence of corneal or cristalline lens opacifications spread the light at wide angular distributions. If the mathematical operator that degrades the image is known, the image can be restored through deconvolution methods. In the particular case of retinal imaging, this operator may be unknown (or partially) due to the presence of cataracts, corneal edema, or vitreous opacification. In those cases, blind deconvolution theory provides useful results to restore important spatial information of the image. In this work, a new semi-blind deconvolution method has been developed by training an iterative process with the Glare Spread Function kernel based on the Richardson-Lucy deconvolution algorithm to compensate a veiling glare effect in retinal images due to intraocular straylight. The method was first tested with simulated retinal images generated from a straylight eye model and applied to a real retinal image dataset composed of healthy subjects and patients with glaucoma and diabetic retinopathy. Results showed the capacity of the algorithm to detect and compensate the veiling glare degradation and improving the image sharpness up to 1000% in the case of healthy subjects and up to 700% in the pathological retinal images. This image quality improvement allows performing image segmentation processing with restored hidden spatial information after deconvolution.
Optical properties of the cornea are responsible for correct vision, ultrastructure allows optical transparency and biomechanical properties governs the shape, elasticity or stiffness of the cor-nea affecting ocular integrity and intraocular pressure. Therefore, optical aberrations, corneal transparency, structure and biomechanics play a fundamental role in the optical quality of hu-man vision, ocular health and refractive surgery outcomes. However, the convergence of those properties is not yet reported at macroscopic scale within the hierarchical structure of the cornea. This work explores the relationships between biomechanics, structure and optical properties (corneal aberrations and optical density) at macrostructural level of the cornea through dual Placido-Scheimpflug imaging and air-puff tonometry systems in a healthy young adult popula-tion. Results showed convergence between optical transparency, corneal macrostructure and biomechanics.
Peripheral refraction can lead to the development of myopia. The aim of this study was to compare relative peripheral refraction (RPR) in the same cohort of uncorrected (WCL) and corrected eyes with two different soft contact lenses (CL) designed for myopia control, and to analyze RPR depending on the patient’s refraction. A total of 228 myopic eyes (114 healthy adult subjects) (−0.25 D to −10.00 D) were included. Open-field autorefraction was used to measure on- and off- axis refractions when uncorrected and corrected with the two CLs (dual focus (DF) and extended depth of focus (EDOF)). The RPR was measured every 10° out to 30° in a temporal-nasal orientation and analyzed as a component of the power vector (M). The average RPR for all subjects was hyperopic when WCL and when corrected with EDOF CL design, but changed to a myopic RPR when corrected with DF design. Significant differences were found between RPR curves with both CLs in all the eccentricities (Bonferroni correction p < 0.008, except 10°N). An incremental relationship between relative peripheral refraction at 30 degrees and myopia level was found. It is concluded that the two CLs work differently at the periphery in order to achieve myopia control.
Purpose The aim of this work is to determinate the effects in the physical parameters in terms of intraocular pressure (IOP) and central corneal thickness (CCT) and corneal biomechanics in terms of corneal resistance factor (CRF) and corneal hysteresis (CH) of wearing silicone-hydrogel soft contact lenses (SiH-CLs) in young adult subjects during a short-term follow-up. Methods 40 eyes of 20 healthy patients with a mean age of 22.87 ± 4.14 were involved in this study. Subjects with corneal diseases, dry eye, irregular astigmatism or who have been previous contact lens wearers were excluded. The ocular response analyzer (Reichert Ophthalmic Instruments) was used to measure CH, CRF and IOP and Scheimpflug imaging (the GALILEI™ Dual Scheimpflug camera analyzer, Ziemer) was used to measure CCT before and 10 days (Group 1) and 20 days (Group 2) after wearing the SiH-CLs. Results IOP was significantly decreased 10 days after using the SiH-CLs (p = 0.009). Within the 20 days' period, Group 2 revealed an even more pronounced decrease in IOP (p = 0.003) while CH increased significantly (p = 0.04). CCT and CRF did not show a significant change during the period of SiH-CLs use. Our finding allowed obtaining an empirical expression that relates IOP, CCT, CRF and CH within a biomechanical compensation experimental model. Conclusions Corneal biomechanical parameters and physical properties of the cornea may be altered due to SiH-CLs use. Our findings could have an impact on the management of glaucoma progression and ocular hypertension.
Optical properties of the cornea are responsible for correct vision; the ultrastructure allows optical transparency, and the biomechanical properties govern the shape, elasticity, or stiffness of the cornea, affecting ocular integrity and intraocular pressure. Therefore, the optical aberrations, corneal transparency, structure, and biomechanics play a fundamental role in the optical quality of human vision, ocular health, and refractive surgery outcomes. However, the inter-relationships of those properties are not yet reported at a macroscopic scale within the hierarchical structure of the cornea. This work explores the relationships between the biomechanics, structure, and optical properties (corneal aberrations and optical density) at a macro-structural level of the cornea through dual Placido–Scheimpflug imaging and air-puff tonometry systems in a healthy young adult population. Results showed correlation between optical transparency, corneal macrostructure, and biomechanics, whereas corneal aberrations and in particular spherical terms remained independent. A compensation mechanism for the spherical aberration is proposed through corneal shape and biomechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.