To study brain free amino acids and their relation with dementia we measured, by high-performance liquid chromatography (HPLC), the concentration of eight free amino acids, amines and related compounds. We used temporal cortex (TC) samples obtained from 13 Alzheimer's disease (AD) patients and an equal number of agematched controls (AC). The patterns of free amino acids, amines and related compounds showed significant quantitative changes in AD conditions with respect to healthy ones. In Alzheimer patients, lower levels of GABA were found in the TC (-57 %). Amino acids glutamate (Glu), and aspartate (Asp) concentrations, also appeared significantly reduced in the TC of AD patients (Glu: -30 %; Asp: -40 %) when compared with controls. The significant gap between methionine (Met: -30 %) and cystathionine (Cysta: ?60 %) levels in TC of AD people to controls, might suggest an under/over activity of the transmethylation and transsulphuration pathways, respectively. Glutamine (Gln) and Urea were an exception to this trend because their content was higher in AD patients than in controls. Albeit these compounds may have particular physiological roles, including the possible mediation of synaptic transmission, changes in amino acid levels and related compounds (detected in steady state) suggest a modified metabolic status in brains of AD patients that reveals a reduced function of synaptic transmission. Because several evidences show that patients might display quite different concentrations of neurotransmitters in brain areas, assessing metabolites in different and well-characterized AD stages should be investigated further.
Multiple Sclerosis (MS) patients present a decrease of antioxidants and neuroprotective and immunoregulatory vitamins and an increase of total homocysteine (tHcy), cholesterol (CHL), HDL-cholesterol, and of cellular stress markers, variably associated with the different phases of the disease. We compared the blood levels of uric acid, folic acid, vitamins B12, A, and E, tHcy, CHL, HDL-cholesterol, and triglycerides in forty MS patients during a phase of clinical inactivity with those of eighty healthy controls, matched for age and sex. We found higher levels of tHcy (p = 0.032) and of HDL-cholesterol (p = 0.001) and lower levels of vitamin E (p = 0.001) and the ratio vitamin E/CHL (p = 0.001) in MS patients. In conclusion, modifications of some biochemical markers of cell damage were detected in MS patients during a phase of clinical inactivity.
Blood levels of total homocysteine (tHcy), cysteine (Cys), total and reduced glutathione (tGSH and rGSH), folic acid (FA), and vitamin B12 (B12) change during ischemic stroke as accompaniment of the tissue damage. The relationship between these changes remains scantly investigated. We evaluated the variation of these molecules in the 48 h after acute large artery atherothrombotic stroke (LAAS) and searched for the presence of matched variation of them. The study involved 50 subjects affected by acute LAAS and 49 healthy controls. Plasma levels of tHcy and Cys were significantly higher and serum levels of FA and B12 and plasma levels of rGSH were significantly lower in the patients than in the control group. Acute LAAS was associated with increased Hcy-decreased tGSH and decreased FA/tGSH. Pathways involved in cellular stress and in tissue repair are activated during acute LAAS.
Milk xanthine oxidase (xanthine: oxygen oxidoreductase; XO; EC 1.1.3.22) was found to catalyze the conversion of retinaldehyde to retinoic acid. The ability of XO to synthesize all trans-retinoic acid efficiently was assessed by its turnover number of 31.56 min-1, determined at pH 7.0 with 1 nM XO and all trans-retinaldehyde varying between 0.05 to 2 microM. The determination of both retinoid and purine content in milk was also considered in order to correlate their concentrations with kinetic parameters of retinaldehyde oxidase activity. The velocity of the reaction was dependent on the isomeric form of the substrate, the all trans- and 9-cis-forms being the preferred substrates rather than 13-cis-retinaldehyde. The enzyme was able to oxidize retinaldehyde in the presence of oxygen with NAD or without NAD addition. In this latter condition the catalytic efficiency of the enzyme was higher. The synthesis of retinoic acid was inhibited 87% and 54% by 4 microM and 2 microM allopurinol respectively and inhibited 48% by 10 microM xanthine in enzyme assays performed at 2 microM all trans-retinaldehyde. The Ki value determined for xanthine as an inhibitor of retinaldehyde oxidase activity was 4 microM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.