This paper aims at investigating the tensile behaviour of basalt fibres on cementitious matrix for the strengthening of masonry structures. The use of Basalt Fibre Reinforced Cementitious Matrix (BFRCM) is favourably considered by the scientific community because it represents a natural composite material with high compatibility with stone and masonry substrate. The study is developed through the generation of Finite Element (FE) models capable of reproducing the tensile behaviour of BFRCM strips with different number of layers of grid. For the scope, the micro-modelling approach is adopted assuming different levels of detail for the simulation of the interface constitutive behaviour. Fibre and substrate are modelled separately and the interface between the two components is simulated by introducing numerical contact properties for reproducing the perfect bond condition, on one hand, and the cohesive tangential slip, on the other hand. The damage of the composite system is investigated using proper damage numerical models at the interface.
In this paper, the tensile behavior of Fiber Reinforced Cementitious Matrix (FRCM) strips is investigated through Finite Element (FE) models. The most adopted numerical modeling approaches for the simulation of the fiber-matrix interface law are described. Among them, the cohesive model is then used for the generation of FE models which are able to simulate the response under traction of FRCM strips tested in laboratory whose results are available in the technical literature. Tests on basalt, PBO and carbon coated FRCM specimens are taken into account also considering different mechanical ratios of the textile reinforcement. The comparison between FE results and experimental data allows validating the adopted numerical modeling approach. Finally, some considerations are provided on the effects of the fiber fabric mechanical ratio and the strength and stiffness of the interface on the tensile capacity of the FRCM strips.
The modeling of the mechanical behavior of Fabric Reinforced Cementitious Matrix (FRCM) composites is a difficult task due to the complex mechanisms established at the fibre-matrix and composite-support interface level. Recently, several modeling approaches have been proposed to simulate the mechanical response of FRCM strengthening systems, however a simple and reliable procedure is still missing. In this paper, two simplified numerical models are proposed to simulate the tensile and shear bond behavior of FRCM composites. Both models take advantage of truss and non-linear spring elements to simulate the material components and the interface. The proposed approach enables us to deduce the global mechanical response in terms of stress-strain or stress-slip relations. The accuracy of the proposed models is validated against the experimental benchmarks available in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.