Atherosclerosis is the leading underlying pathologic process that results in cardiovascular diseases, which represents the main cause of death and disability in the world. The atherosclerotic process is a complex degenerative condition mainly affecting the medium- and large-size arteries, which begins in childhood and may remain unnoticed during decades. The intima-media thickness (IMT) of the common carotid artery (CCA) has emerged as one of the most powerful tool for the evaluation of preclinical atherosclerosis. IMT is measured by means of B-mode ultrasound images, which is a non-invasive and relatively low-cost technique. This paper proposes an effective image segmentation method for the IMT measurement in an automatic way. With this purpose, segmentation is posed as a pattern recognition problem, and a combination of artificial neural networks has been trained to solve this task. In particular, multi-layer perceptrons trained under the scaled conjugate gradient algorithm have been used. The suggested approach is tested on a set of 60 longitudinal ultrasound images of the CCA by comparing the automatic segmentation with four manual tracings. Moreover, the intra- and inter-observer errors have also been assessed. Despite of the simplicity of our approach, several quantitative statistical evaluations have shown its accuracy and robustness.
The segmentation of the heart is usually demanded in the clinical practice for computing functional parameters in patients, such as ejection fraction, cardiac output, peak ejection rate, or filling rate. Because of the time required, the manual delineation is typically limited to the left ventricle at the end-diastolic and end-systolic phases, which is insufficient for computing some of these parameters (e.g., peak ejection rate or filling rate). Common computer-aided (semi-)automated approaches for the segmentation task are computationally demanding, and an initialization step is frequently needed. This work is intended to address the aforementioned problems by providing an image-driven method for the accurate segmentation of the heart from computed tomography scans. The resulting algorithm is fast and fully automatic (even the region of interest is delimited without human intervention). The proposed methodology relies on image processing and analysis techniques (such as multi-thresholding based on statistical local and global parameters, mathematical morphology, and image filtering) and also on prior knowledge about the cardiac structures involved. Segmentation results are validated through the comparison with manually delineated ground truth, both qualitatively (no noticeable errors found after visual inspection) and quantitatively (mass overlapping over 90%).
Atherosclerosis is one of the most extended cardiovascular diseases nowadays. Although it may be unnoticed during years, it also may suddenly trigger severe illnesses such as stroke, embolisms or ischemia. Therefore, an early detection of atherosclerosis can prevent adult population from suffering more serious pathologies. The intima-media thickness (IMT) of the common carotid artery (CCA) has been used as an early and reliable indicator of atherosclerosis for years. The IMT is manually computed from ultrasound images, a process that can be repeated as many times as necessary (over different ultrasound images of the same patient), but also prone to errors. With the aim to reduce the inter-observer variability and the subjectivity of the measurement, a fully automatic computer-based method based on ultrasound image processing and a frequency-domain implementation of active contours is proposed. The images used in this work were obtained with the same ultrasound scanner (Philips iU22 Ultrasound System) but with different spatial resolutions. The proposed solution does not extract only the IMT but also the CCA diameter, which is not as relevant as the IMT to predict future atherosclerosis evolution but it is a statistically interesting piece of information for the doctors to determine the cardiovascular risk. The results of the proposed method have been validated by doctors, and these results are visually and numerically satisfactory when considering the medical measurements as ground truth, with a maximum deviation of only 3.4 pixels (0.0248 mm) for IMT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.