MreB, a major component of the bacterial cytoskeleton, exhibits high structural homology to its eukaryotic counterpart actin. Live cell microscopy studies suggest that MreB molecules organize into large filamentous spirals that support the cell membrane and play a key shape-determining function. However, the basic properties of MreB filament assembly remain unknown. Here, we studied the assembly of Thermotoga maritima MreB triggered by ATP in vitro and compared it to the wellstudied assembly of actin. These studies show that MreB filament ultrastructure and polymerization depend crucially on temperature as well as the ions present on solution. At the optimal growth temperature of T. maritima, MreB assembly proceeded much faster than that of actin, without nucleation (or nucleation is highly favorable and fast) and with little or no contribution from filament end-to-end annealing. MreB exhibited rates of ATP hydrolysis and phosphate release similar to that of F-actin, however, with a critical concentration of ϳ3 nM, which is ϳ100-fold lower than that of actin. Furthermore, MreB assembled into filamentous bundles that have the ability to spontaneously form ring-like structures without auxiliary proteins. These findings suggest that despite high structural homology, MreB and actin display significantly different assembly properties.
The pH dependencies of the UV-vis and fluorescent spectra of new water-soluble dendritic porphyrins and tetrabenzoporphyrins were studied. Because of extended pi-conjugation and nonplanar distortion, the absorption and the emission bands of tetraaryltetrabenzoporphyrins (Ar(4)TBP) are red-shifted and do not overlap with those of regular tetraarylporphyrins (Ar(4)P). When encapsulated inside dendrimers with hydrophilic outer layers, Ar(4)Ps and Ar(4)TBPs become water soluble and can serve as pH indicators, with pK's adjustable by the peripheral charges on the dendrimers. Two new dendritic porphyrins, Gen 4 polyglutamic porphyrin dendrimer H(2)P-Glu(4)OH (1) with 64 peripheral carboxylates and Gen 1 poly(ester amide) Newkome-type tetrabenzoporphyrin dendrimer H(2)TBP-Nw(1)OH (2) with 36 peripheral carboxylates, were synthesized and characterized. The pK's of the encapsulated porphyrins (pK(H)()2(P)(-)(Glu)()4(OH) = 6.2 and pK(H)()2(TBP)(-)(Nw)()1(OH) = 6.3) were found to be strongly influenced by the dendrimers, revealing significant electrostatic shielding of the cores by the peripheral charges. The titration curves obtained by differential excitation using the mixtures of the dendrimers were shown to be identical to those determined for the dendrimers individually. Due to their peripheral carboxylates and nanometric molecular size, porphyrin dendrimers cannot penetrate through phospholipid membranes. Dendrimer 1 was captured inside phospholipid liposomes, which were suspended in a solution containing dendrimer 2. No response from 1 was detected upon pH changes in the bulk solution, while the response from 2 was predictably strong. When proton channels were created in the liposome walls, both compounds responded equally to the bulk pH changes. These results suggest that porphyrin dendrimers can be used as fluorescent pH indicators for proton gradient measurements.
SummaryThe isolation and characterization of cDNA and genomic clones encoding a proteinase inhibitor prorein (MPI) in maize is reported. Accumulation of the MPI mRNA is Induced in response to fungal infection in germinating maize embryos. The expression pattem of the MPI gene, in healthy and fungal infected maize tissues, was examined and compared with the expression pattern of a gene that codes for a pathogenesis-related protein (the PRms protein) from maize. These two genes are induced by fungal infection, however different signals trigger their activation. Accumulation of the proteinase inhibitor mRNA is more a consequence of the wound produced by the penetration and colonizetion of the host tissues by the pathogen, than the result of a direct molecular recognition of the pathogen by the plant, as is the case for the induction of the PRms gene. Wounding, or treatment with abscislc acid or methyl jasmonete, stimulate MPI mRNA accumulation, but not PRms mRNA accumulation. Local and systemic induction of the MPI gene expression in response to wounding occurs in maize plants. To the authors' knowledge, this is the first example of a gene from a monocotyledonous species that clearly shows a systemic wound response. The possible functional implications for the existence of different signal traneduction pathways that simultaneously activate a battery of defense mechanisms against potential pathogens are discussed.
Oxidative stress is a common feature in neurodegenerative diseases associated with neuroinflammation, and therefore, has been proposed as a key target for novel therapies for these diseases. Recently, adipose-derived stem cell (ASC)-based cell therapy has emerged as a novel strategy for neuroprotection. In this study, we evaluate the therapeutic role of ASC-conditioned medium (ASC-CM) against HO-induced neurotoxicity in a new in vitro model of ec23/brain-derived neurotrophic factor (BDNF)-differentiated human SH-SY5Y neuron-like cells (SH-SY5Yd). In the presence of ASC-CM, stressed SH-SY5Yd cells recover normal axonal morphology (with an almost complete absence of HO-induced axonal beading), electrophysiological features, and cell viability. This beneficial effect of ASC-CM was associated with its antioxidant capacity and the presence of growth factors, namely, BDNF, glial cell line-derived neurotrophic factor, and transforming growth factor β1. Moreover, the neuroprotective effect of ASC-CM was very similar to that obtained from treatment with BDNF, an essential factor for SH-SY5Yd cell survival. Importantly, we also found that the addition of the antioxidant agent N-acetyl cysteine to ASC-CM abolished its restorative effect; this was associated with a strong reduction in reactive oxygen species (ROS), in contrast to the moderate decrease in ROS produced by ASC-CM alone. These results suggest that neuronal restorative effect of ASC-CM is associated with not only the release of essential neurotrophic factors, but also the maintenance of an appropriate redox state to preserve neuronal function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.