Climacostol, a compound produced by the ciliated protozoan Climacostomum virens, displayed cytotoxic properties in vitro. This study demonstrates that it has anti-tumour potential. Climacostol caused a reduction of viability/proliferation of B16-F10 mouse melanoma cells, a rapidly occurring DNA damage, and induced the intrinsic apoptotic pathway characterised by the dissipation of the mitochondrial membrane potential, the translocation of Bax to the mitochondria, the release of Cytochrome c from the mitochondria, and the activation of Caspase 9-dependent cleavage of Caspase 3. The apoptotic mechanism of climacostol was found to rely on the up-regulation of p53 and its targets Noxa and Puma. In vivo analysis of B16-F10 allografts revealed a persistent inhibition of tumour growth rate when melanomas were treated with intra-tumoural injections of climacostol. In addition, it significantly improved the survival of transplanted mice, decreased tumour weight, induced a remarkable reduction of viable cells inside the tumour, activated apoptosis and up-regulated the p53 signalling network. Importantly, climacostol toxicity was more selective against tumour than non-tumour cells. The anti-tumour properties of climacostol and the molecular events associated with its action indicate that it is a powerful agent that may be considered for the design of pro-apoptotic drugs for melanoma therapy.
Cellular and molecular data have evidenced a gut-associated lymphoid tissue in a variety of teleost species, abundantly containing T cells, whose origin, selection and functions are still unclear. This study reports CD4, CD8-α, MHCI-α, MHCII-β, rag-1 and TCR-β gene transcription along the intestine (anterior, middle and posterior segments) and in the thymus of one year-old Dicentrarchus labrax (L.). Real-time PCR findings depicted a main role of the thymus in T-cell development, but also rag-1 and CD8-α transcripts are detected in the intestine, having significant expression in the posterior segment. In the whole intestine TCR-β and CD8-α exceeded CD4 transcripts. RNA ISH confirmed these data and detailed that mucosal CD8-α+ cells were especially numerous in the epithelium and in aggregates in the lamina propria. Regional differences in T-cell-specific gene expressions are first described in the intestine of a bony fish. High non-specific cytotoxic activity against xenogeneic and allogeneic cells was found in lymphocytes purified from the intestinal mucosa, providing further insight into their local defence roles.
A lipase-like protein (PhpaLIP) was identified as the major protein component in the secretion of the female reproductive accessory glands of the sand fly Phlebotomus papatasi. The full-length cDNA encoding this protein was isolated and its nucleotide sequence determined. The deduced translational product of the gene contains a GFSFG motif, consistent with a GXSXG consensus, which is shared by most bacterial and eukaryotic hydrolases. Transcriptional analysis of the PhpaLIP gene showed that its expression is female-specific, and is also detectable in districts other than accessory glands, suggesting that it might play different functions. Taken together with the observation of sequence similarity shared by PhpaLIP and mammalian lipases, the demonstration of the presence of lipase activity in the accessory gland secretion suggests a possible biological role of PhpaLIP gene product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.