[1] In November 2004, a regional climate change workshop was held in Guatemala with the goal of analyzing how climate extremes had changed in the region. Scientists from Central America and northern South America brought long-term daily temperature and precipitation time series from meteorological stations in their countries to the workshop. After undergoing careful quality control procedures and a homogeneity assessment, the data were used to calculate a suite of climate change indices over the period. Analysis of these indices reveals a general warming trend in the region. The occurrence of extreme warm maximum and minimum temperatures has increased while extremely cold temperature events have decreased. Precipitation indices, despite the large and expected spatial variability, indicate that although no significant increases in the total amount are found, rainfall events are intensifying and the contribution of wet and very wet days are enlarging. Temperature and precipitation indices were correlated with northern and equatorial Atlantic and Pacific Ocean sea surface temperatures. However, those indices having the largest significant trends (percentage of warm days, precipitation intensity, and contribution from very wet days) have low correlations to El Niño-Southern Oscillation. Additionally, precipitation indices show a higher correlation with tropical Atlantic sea surface temperatures.
El presente trabajo consiste en el análisis de la radiación incidente en la Facultad de Ciencias de la Ingeniería y Tecnología Valle de las Palmas que han sido registradas por la estación meteorológica ubicada en el mismo sitio. El estudio fue realizado con los datos registrados en el año 2013, de los cuales se tomaron los días típicos para cada una de las estaciones del año, esto con el fin de realizar el análisis y poder observar que tanto varía el valor de la radiación incidente en esos días de los meses que representan a cada estación del año, mostrando dos comparaciones más que corresponden a los Modelos de Hottel (1976) y Liu Jordan(1960) y al Modelo Mexicano de Zayas y Estrada-Cajigal (1983) de la Universidad Nacional Autónoma de México, para el cálculo de la radiación instantánea, en los cuales se calculó la radiación para los mismos intervalos de tiempo que registra la estación meteorológica que son cada 10 minutos.
About 2022, studies on environmental conditions inside classrooms have increased because they are related to well-being, performance, and student productivity in terms of concentration, attention, and learning during school hours. Assessing the conditions of the educational space once inhabited can be fundamental to identifying environmental adjustments that could improve achievement in learning through design strategies in school facilities in the locality. The evaluation of the thermal and luminic conditions of three classrooms designed to function with natural ventilation, in two buildings of the Universidad Autónoma of Baja California, in Tijuana, Mexico, during the cold-warm transition period is presented. Physical measurements of environmental indicators were made, including temperature, relative humidity, and daylight. A total of 181 students completed the environmental survey questionnaires. This study aimed to evaluate the interior environmental space conditions and determine the influence on occupants' comfort. Results showed that more than 50% of the students were in a thermal discomfort situation when the temperature was out of the range of 19.7°C -27.7° C, consistent with the application of the ASHRAE Adaptative Comfort Zones. Daylight values were below the minimum required of 300 Lux for educational classroom specificity in [1, 2] of the three classrooms. Building's orientations, West and South registered illuminance values that could produce glare and increase thermal discomfort due to high solar radiation. The results confirmed the close relationship between environmental conditions and students' comfort in classrooms.
El reciclaje de aluminio ha aumentado en los últimos años en un 5% anual. El objetivo de este estudio es analizar la aportación en términos de energía potencial de acuerdo con el aluminio enviado a reciclaje, el cual es generado en las actividades diarias de la Facultad de Ciencias de la Ingeniería y Tecnología de la Universidad Autónoma de Baja California (FCITEC-UABC). La metodología empleada consistió en realizar una investigación documental de los registros de latas de aluminio enviadas a reciclaje durante 2018 y 2019 y con base en el Modelo Individual de Residuos de la Environmental Agency Protection (iWARM-EPA) determinar su equivalente en unidades de energía. De acuerdo con los registros de FCITEC-UABC durante el periodo de análisis, se enviaron a reciclaje 177.7 kilogramos de latas de aluminio, equivalente a 13, 600 unidades, con base en estos datos y el modelo utilizado, la facultad aporta con este material enviado a reciclaje, un potencial de ahorro de energía neta equivalente a 3960.3 kWh[1]. Éstos, por ejemplo, equivalen a 300,000 horas disponibles, para su uso en focos ahorradores de 60W o 79,000 en computadoras portátiles.[1] Kilovatio-hora
About 2022, studies on environmental conditions inside classrooms have increased because they are related to well-being, performance, and student productivity in terms of concentration, attention, and learning during school hours. Assessing the conditions of the educational space once inhabited can be fundamental to identifying environmental adjustments that could improve achievement in learning through design strategies in school facilities in the locality. The evaluation of the thermal and luminic conditions of three classrooms designed to function with natural ventilation, in two buildings of the Universidad Autónoma of Baja California, in Tijuana, Mexico, during the cold-warm transition period is presented. Physical measurements of environmental indicators were made, including temperature, relative humidity, and daylight. A total of 181 students completed the environmental survey questionnaires. This study aimed to evaluate the interior environmental space conditions and determine the influence on occupants' comfort. Results showed that more than 50% of the students were in a thermal discomfort situation when the temperature was out of the range of 19.7°C -27.7° C, consistent with the application of the ASHRAE Adaptative Comfort Zones. Daylight values were below the minimum required of 300 Lux for educational classroom specificity in [1, 2] of the three classrooms. Building's orientations, West and South registered illuminance values that could produce glare and increase thermal discomfort due to high solar radiation. The results confirmed the close relationship between environmental conditions and students' comfort in classrooms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.