-This paper proposes the design of an evolutionary algorithm for building classifiers specifically aimed towards performing classification and sentiment analysis over texts. Moreover, it has properties taken from Artificial Immune Systems, as it tries to resemble biological systems since they are able to discriminate harmful from innocuous bodies (in this case, the analogy could be established with negative and positive texts respectively). A framework, namely OpinAIS, is developed around the evolutionary algorithm, which makes it possible to distribute it as an open-source tool, which enables the scientific community both to extend it and improve it. The framework is evaluated with two different public datasets, the first involving voting records for the US Congress and the second consisting in a Twitter corpus with tweets about different technology brands, which can be polarized either towards positive or negative feelings; comparing the results with alternative machine learning techniques and concluding with encouraging results. Additionally, as the framework is publicly available for download, researchers can replicate the experiments from this paper or propose new ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.