Temporomandibular dysfunctions are a heterogeneous group of conditions involving the temporomandibular joints (TMJs) and periarticular musculoskeletal structures. This study aimed to evaluate the effectiveness of a physiotherapy program for TMJ dysfunctions and the relationship with cervical spine. The study design was a non-randomized clinical trial with two parallel treatment groups: 33 subjects in the experimental group that underwent conservative drug treatment and physiotherapy treatment, and 31 subjects in the control group that underwent only conservative drug treatment. The participants were examined at baseline and re-examined after 3 months. In this study there was a higher incidence of female subjects. After 3 months of treatment of the TMJs and cervical spine, pain decreased in both groups (p = 0001). Muscle testing at the cervical spine and temporomandibular level showed a decrease in pain and muscles spasms. The average percentage values of the Neck Disability Index (NDI) and the Jaw Functional Limitation Scale 8 (JFLS 8) decreased significantly in both groups, but especially in the experimental group (p = 0.001). Physiotherapy treatments could maintain the functional state at the temporomandibular and cervical levels, thus contributing to increasing the quality of daily life.
One of the deadliest diseases is skin cancer, especially melanoma. The high resemblance between different skin lesions such as melanoma and nevus in the skin colour images increases the complexity of identification and diagnosis. An efficient automated early detection system for skin cancer detection is essential in order to save human lives, time, and effort. In this article, an automatic skin lesion classification system using a pretrained deep learning network and transfer learning was proposed. Here, diagnosing melanoma in premature stages, a detection system has been designed which contains the following digital image processing techniques. First, dermoscopy images of skin were taken and this is subjected to a preprocessing step for noise removal and postprocessing step for image enhancement. Then the processed image undergoes image segmentation using k-means and modified k-means clustering. Second, using feature extraction technology, Gray Level Co-occurrence Matrix, and first order statistics, characteristics are extracted. Features are selected on the basis of Harris Hawks optimization (HHO). Finally, various classifiers are used for predicting the stages and efficiency of the proposed work. Measures of well-known quantities, sensitivity, precision, accuracy, and specificity are used in assessing the efficiency of the suggested method, where higher values were obtained. Compared to the current methods, it is found that the classification rate exceeded the output of the current approaches in the performance of the proposed approach.
This study aims to introduce a resistance training protocol (6 repetitions × 70% of 1 maximum repetition (1RM), followed by 6 repetitions × 50% of 1RM within the same set) specifically designed for postmenopausal women with osteopenia/osteoporosis and monitor the effect of the protocol on bone mineral density (BMD) in the lumbar spine, assessed by dual-energy X-ray absorptiometry (DEXA). The subjects included in the study were 29 postmenopausal women (56.5 ± 2.8 years) with osteopenia or osteoporosis; they were separated into two groups: the experimental group (n = 15), in which the subjects participated in the strength training protocol for a period of 6 months; and the control group (n = 14), in which the subjects did not take part in any physical activity. BMD in the lumbar spine was measured by DEXA. The measurements were performed at the beginning and end of the study. A statistically significant increase (Δ% = 1.82%) in BMD was observed at the end of the study for the exercise group (0.778 ± 0.042 at baseline vs. 0.792 ± 0.046 after 6 months, p = 0.018, 95% CI [−0.025, −0.003]); while an increase was observed for the control group (Δ% = 0.14%), the difference was not statistically significant (0.762 ± 0.057 at baseline vs. 0.763 ± 0.059, p = 0.85, 95% CI [−0.013, 0.011]). In conclusion, our strength training protocol seems to be effective in increasing BMD among women with osteopenia/osteoporosis and represents an affordable strategy for preventing future bone loss.
The development of unusual cells in the cerebrum causes brain cancer. It is classified primarily into two classes: a noncarcinogenic (benign) type of growth and cancerous (malignant) growth. Early detection of this disease is a quintessential task for all medical practice professionals. For traditional approaches of tumor detections, certain limitations exist. They include less effectiveness, inability to detect due to low-quality processing of images, less dataset for training and testing, less predictive nature to models, and skipping of quintessential stages. All these lead to inaccurate results of tumor detections. To overcome this issue, this paper brings an effective deep learning technique for brain tumor detection with the following stages: (a) data collection from REMBRANDT dataset containing multisequence MRI of 130 patients; (b) preprocessing using conversion to greyscale, skull stripping, and histogram equalization; (c) segmentation uses genetic algorithm; (d) feature extraction using discrete wavelet transform (DWT); (e) particle swarm optimization technique for feature selection; (f) classification using U-Net. Experiment evaluation states that the proposed model (GA-UNET) outperforms (accuracy: 0.97, sensitivity: 0.98, specificity: 0.98) compared to other advanced models.
Tumour region extraction (RE) method identifies the area of interest in MR imaging as it also highlights tumour boundaries. Some other intensities are existing, they are not visible but have their existence in region, and this region is called growing region. Such region is to be tumour region. Due to the variation of intensities in MRI images, tumour visibility becomes uncleared. Tumour intensity variations (tumour tissues) mix with normal brain tissues. In the light of above circumstance, tumour growing region becomes challenge. The goal of work is to extract the region of interest with confidence. The objective of the study is to develop the region of interest of brain tumour MRI image method by using confidence score for identifying the variation of intensity. The significance of work is based on identification of region of interest (tumour region). Confidence score is measured through pattern of intensities of MRI image. Similar patterns of brain tumour intensities are identified. Each pattern of intensities is adjusted with certain scale, and then biggest blob is analysed. Various biggest area blobs are combined, and resultant biggest blob is formed. In fact, resultant area blob is a combination of different patterns. Each pattern is assigned with particular colour. These colours highlight the growing region. Further, a contour is detected around the tumour boundaries. With combination of region scale fitting and contour detection (CD), tumour boundaries are further separated from normal tissues. Hence, the confidence score (CS) is formed from CD. CS is further converted to confidence region (CR). Conversion to CR is performed though confidence interval (CI). CI is based on defined conditions. In such conditions, different probabilities are considered. Probability identifies the region. Source of region formation is pixels; these pixels highlight tumour core significantly. This CR is obtained through checking standard deviation and statistical evaluation using confidence interval. Hence, region-of-interest pixels are identifying the CR. CR is evaluated through 97% Dice over index (DOI), 94% Jacquard, MSE 1.24, and PSNR 17.45. Value of testing parameter from benchmark study was JI, DOI, and MSE, PSNR : JI was 31.5%, DOI was 47.3%, MSE was 2.5 dB, and PSNR was 40 dB. The parameters are measured for the complex images; contribution parameter classifies the mean pixel values and deviating pixel values, and the classification of the pixel value is like to be termed as intensities. Mentioned classification extracts the variation of intensity pixels accurately; then, algorithm is highlighting the region as compared to the normal tumour cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.