The coronavirus disease (COVID-19), identified in Wuhan, China, on December 2019, was declared a pandemic by the World Health Organization, on March, 2020. Since then, efforts have been gathered to describe its clinical course and to determine preventive measures and treatment strategies. Adults older than 65 years of age are more susceptible to serious clinical symptoms and present higher mortality rates. Angiotensin-converting enzyme 2 (ACE2) is a major receptor for some coronavirus infection, including SARS-COV-2, but is also a crucial determinant in anti-inflammation processes during the renin–angiotensin system (RAS) functioning – converting angiotensin II to angiotensin 1–7. The decline in ACE2 expression that occurs with aging has been associated to the higher morbidity and mortality rates in older adults. These observations highlight the importance of investigating the association between COVID-19 and age-related neurodegenerative disorders, i.e., Parkinson’s and Alzheimer’s diseases. A possible option to reduce the risk of COVID-19 is vitamin D supplementation, due to its anti-inflammatory and immune-system-modulating effects. It has also been suggested that vitamin D supplementation plays a role in slowing progression of Parkinson and Alzheimer. The present study is a literature review of articles published on the theme COVID-19, Parkinson and Alzheimer’s diseases, and the role played by vitamin D. PUBMED, MEDLINE, and EMBASE databases were consulted. Results confirm neurodegenerative and neuroinflammatory effects of COVID-19, aggravated in Parkinson’s and Alzheimer’s patients, and the important role of vitamin D as a possible therapeutic strategy. Nevertheless, randomized controlled trials and large population studies are still warranted.
Crack cocaine is the crystal form of cocaine and can be smoked, and rapidly absorbed, and, in part for this reason, is potently addictive. It is hypothesized that crack cocaine is able to induce important changes in different tissues and organs, and thus dramatically alter behavior. Nevertheless, which alterations in the central nervous system are related to its frequent use is still a matter of discussion. The present study is a literature review of articles published between the years 2008 and 2018 on the theme ‘crack cocaine and brain’ available in PUBMED, MEDLINE, EMBASE, and Google scholar databases. The results show that the use of crack cocaine induces important behavioral, neuroanatomical, and biochemical alterations. The main behavioral sequelae include cognitive and emotional changes, such as increased anxiety and depressive symptoms, attention and memory deficits, and hyperactivity. Among the neurobiological alterations are reductions in the activity of the prefrontal, anterior cingulate cortex, and nucleus accumbens. Molecular changes include decreases in neurotrophic factors and increases in oxidative stress and inflammatory cytokines, which may be responsible for the morphological alterations observed. It is also hypothesized that these neurobiological changes might explain the emotional and cognitive dysfunctions experienced by crack cocaine addicts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.