Chromium (VI) removal capacity in aqueous solution by oat biomass was analyzed by the diphenylcarbazide method. Bioadsorption was evaluated at different pH values (1, 2, 3 and 4) and at different times. The effect of temperature in the range of 28 °C to 60 °C and the removal at different initial Cr (VI) concentrations of 200 to 1000 mg/L were also studied. The highest bioadsorption (100% with 100 mg/L of the metal and 1 g of biomass) was at 8 h, at pH of 1.0 and 28 °C. With regard to temperature, the highest removal was to 60 oC, with a 100% removal at 90 min. Removal was more efficient when higher concentrations of biomass were used (100%, 3 h and 5 g of biomass). Untreated biomass (washed and ground biomass) showed excellent metal removal capacity in situ, 82.6% and 85.3% removal in contaminated soil and water, respectively, after 10 days of incubation, using 25 g of the biomass (100 mL of water). These results show that Cr (VI) can be removed from industrial wastewater using oat biomass.
Los hongos se pueden comportar como alergenos, y si la concentración de esporas supera las 2.000 UFC/m3 son un factor de riesgo para la salud. Nuestro objetivo fue aislar esporas de hongos alergenos en una biblioteca. Para ello, se muestrearon 20 áreas, con el aparato Andersen de seis niveles, con cajas de Petri con agar sabouraud. Se aisló un total de 787 colonias, el 90.34% de hongos filamentosos y un 9.66% de levaduras. Los géneros aislados con mayor frecuencia fueron Cladosporium sp. (52.99%) y Penicillium sp. (13.34%), la temperatura y la humedad relativa promedio fueron de 24°C y 50% H. R., respectivamente. Se concluye que la concentración de esporas encontrada estuvo dentro de los límites aceptables de UFC/m3, sin embargo se sugiere mantener ventanas cerradas y hacer una adecuada limpieza de los espacios para evitar futuras complicaciones tanto en la salud de los usuarios como en el deterioro del material bibliográfico.
Mercury (II) removal capacity in aqueous solution by Aspergillus niger biomass was analyzed by the atomic absorption spectrometry method. The fungus grew in 2000 ppm of the metal (20.3%). Biosorption was evaluated at different pH (3.5, 4.5, and 5.5) at different times. In addition, the effect of temperature in the range of 28°C to 45oC and removal at different initial concentrations of Hg (II) from 100 to 500 mg/L were also studied. The highest biosorption (83.2% with 100 mg/L of the metal, and 1 g of biomass) was 24 h at pH of 5.5 and 28oC. With regard to temperature, the highest removal was to 28oC, with an 83.2% removal at 24 h, and at higher biomass concentrations, the removal was most efficient (100% in 12 h with 5 g of biomass). Fungal biomass showed good removal capacity of the metal in situ, 69% removal in contaminated water, after 7 days of incubation and 5 g of biomass (100 mL water), so it can be used to remove industrial wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.