S U M M A R YFor the first time, a comparative analysis of the resolution and variance properties of 2-D models of electrical resistivity derived from single and joint inversions of dc resistivity (DCR) and radiomagnetotelluric (RMT) measurements is presented.DCR and RMT data are inverted with a smoothness-constrained 2-D scheme. Model resolution, model variance and data resolution analyses are performed both with a classical linearized scheme that employs the smoothness-constrained generalized inverse and a non-linear truncated singular value decomposition (TSVD). In the latter method, the model regularization used in the inversion is avoided and non-linear semi-axes give an approximate description of the non-linear confidence surface in the directions of the model eigenvectors. Hence, this method analyses the constraints that can be provided by the data. Model error estimates are checked against improved and independent estimates of model variability from most-squares inversions.For single and joint inverse models of synthetic data sets, the smoothness-constrained scheme suggests relatively small model errors (typically up to 30 to 40 per cent) and resolving kernels that are spread over several cells in the vicinity of the investigated cell. Linearized smoothness-constrained errors are in good agreement with the corresponding most-squares errors. The variability of the RMT model as estimated from non-linear semi-axes is confirmed by TSVD-based most-squares inversions for most model cells within the depth range of investigation. In contrast to this, most-squares errors of the DCR model are consistently larger than errors estimated from non-linear semi-axes except for the smallest truncation levels.The model analyses confirm previous studies that DCR data can constrain resistive and conductive structures equally well while RMT data provide superior constraints for conductive structures. The joint inversion can improve error and resolution of structures which are within the depth ranges of exploration of both methods. In such parts of the model which are outside the depth range of exploration for one method, error and resolution of the joint inverse model are close to those of the best single inversion result subject to an appropriate weighting of the different data sets.
Multi-scale geophysical studies were conducted in the central Skellefte district (CSD) in order to delineate the geometry of the upper crust (down to maximum ~ 4.5 km depth) for prospecting volcanic massive sulphide (VMS) mineralization. These geophysical investigations include potential field, resistivity/induced polarization (IP), reflection seismic and magnetotelluric (MT) data which were collected between 2009 and 2010. The interpretations were divided in two scales: (i) shallow (~ 1.5 km) and (ii) deep (~ 4.5 km). Physical properties of the rocks, including density, magnetic susceptibility, resistivity and chargeability, were also used to improve interpretations. The study result delineates the geometry of the upper crust in the CSD and new models were suggested based on new and joint geophysical interpretation which can benefit VMS prospecting in the area. The result also indicates that a strongly conductive zone detected by resistivity/IP data may have been missed using other geophysical data.
A seismic reflection and MT survey was carried out along a 27-km long transect in northwestern Skellefte District, as part of a bigger 3D modeling project. The main motivation for the data acquisition is to elucidate the geologic relationship between the known mineralizations in the Adak mining camp to the north and in the well studied Kristineberg area south of the transect. The seismic reflection data were acquired with a VIBSIST system, and show reflectivity down to 3 s. Apart from the conventional processing for crystalline environments, the seismic data was also subject to an azimuthal binning procedure and crossdip analysis, allowing the orientation of planar reflectors in 3D. Regarding the MT data, it is primarily of good quality along the 17 installed sites. The inversion of the determinant of the impedance tensor yielded a stable 2D resistivity model, dominated by resistors corresponding to the postorogenic intrusions along the transect. Adding the location of the analyzed seismic reflectors in the MT inversion rendered an integrated model that facilitated a preliminary joint interpretation of the data sets. Overall, the results are in good agreement with surface observations and reveal a crude configuration of the geologic units below the transect. The most prominent outcomes are the lateral and depth extent of the large postorogenic intrusions in the area reaching to 5-or 6-km depth, the dimensions of the nearly vertical Brännäs gabbro extending to 6-km depth, and the presence of enhanced conductivities along the transect at about 10 km depth. The latter is probably related to the deep conductor previously identified in the district.
Abstract. Structural analysis of the Palaeoproterozoic volcanogenic massive sulfide (VMS) hosting Kristineberg area, Sweden, constrained by existing magnetotelluric (MT) and seismic reflection data, reveals that the complex geometry characterized by non-cylindrical antiformal structures is due to transpression along the termination of a major high-strain zone. Similar orientations of the host rock deformation fabrics and the VMS ore lenses indicate that the present-day geometry of the complex VMS deposits in the Kristineberg area may be attributed to tectonic transposition. The tectonic transposition was dominantly controlled by reverse shearing and related upright to overturned folding, with increasing contribution of strike-slip shearing and sub-horizontal flow towards greater crustal depths. Furthermore, the northerly dip of the previously recognized subsurface crustal reflector within the Kristineberg area is attributed to formation of crustal compartments with opposite polarities within the scale of the whole Skellefte district. The resulting structural framework of the main geological units is visualized in a 3-D model which is available as a 3-D PDF document through the publication website.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.