Eye color prediction based on an individual's genetic information is of interest in the field of forensic genetics. In recent years, researchers have studied different genes and markers associated with this externally visible characteristic and have developed methods for its prediction. The IrisPlex represents a validated tool for homogeneous populations, though its applicability in populations of mixed ancestry is limited, mainly regarding the prediction of intermediate eye colors. With the aim of validating the applicability of this system in an admixed population from Argentina (n = 302), we analyzed the six single nucleotide variants used in that multiplex for eye color and four additional SNPs, and evaluated its prediction ability. We also performed a genotype-phenotype association analysis. This system proved to be useful when dealing with the extreme ends of the eye color spectrum (blue and brown) but presented difficulties in determining the intermediate phenotypes (green), which were found in a large proportion of our population. We concluded that these genetic tools should be used with caution in admixed populations and that more studies are required in order to improve the prediction of intermediate phenotypes.
To identify the changes in the lipid profile of the tear film in two human populations exposed to different levels of particulate material, and its relationship with dry eye, by gas chromatography with mass spectrometry (GC-MS) detection. A panel study involving 78 volunteers, who live and work in two locations in Argentina with different pollution levels: urban zone (n = 44) and industrial zone (n = 34). We measured the mean levels of particulate matter (PM) exposure. The tear samples were analyze by gas GC-MS detection and the dry eye was diagnose using Schirmer test, fluorescein breakup time, vital staining with fluorescein and lissamine green, and lid parallel conjunctival folds (LIPCOF). Statistical analysis was performed using Chi-Square, Bartlett's, Mann-Whitney tests, and Multiple Correspondence Analysis. PM 10 level was significantly higher in industrial zone than in urban area (p < 0.05). Subjects exposed to higher levels of PM 10 in outdoor air presented more presence of fatty acids (FA) of long chain, a higher proportion of saturated fatty acids (SFA), and lower unsaturated fatty acids (UFA), showing a differentiated profile, which may be associated with a PM level. The incidence of dry eye was greater in the industrial zone (p < 0.001), showing in both populations for this pathology higher FA ω-6 levels, which are responsible for the inflammation process. The lipid profile in populations exposed to higher levels of PM 10 , like the industrial zone, shows a differentiated profile of FA and more incidence of dry eye with higher FA ω-6 levels, which are responsible for the inflammation process.
PurposeTo evaluate ocular surface alterations in two populations at different exposure levels to particulate matter (PM) in their living and work environments.MethodsA cross-sectional study was conducted, including 78 volunteers from Argentina who lived and worked under different pollution levels in an urban (U; n = 44) or industrial zone (I; n = 34). Mean exposure level to PM was evaluated. Responses to the Ocular Symptom Disease Index and McMonnies questionnaire were obtained from all subjects. Subsequently, an assessment through the Schirmer I test (ST), slit lamp microscopy, vital staining, and tear breakup time was conducted. Statistical analyses with Chi-square and Bartlett's tests, as well as Student's t-tests and principal component analysis (PCA), were performed.ResultsParticles of size < 2.5 μm (PM2.5) level was significantly higher in the I group than the U group (P = 0.04). Ocular surface parameters including bulbar redness, eyelid redness, and the degree of vital staining with fluorescein (SF) and lissamine green (SLG) exhibited difference between the groups. With regards to the tear film, statistically significant differences in the ST value and meibomian gland dysfunction between the groups were detected (P = 0.003 and P = 0.02, respectively). Conjunctival SF and SLG, and ST values were identified as factors which could distinguish groups exposed to different PM levels.ConclusionSubjects exposed to higher levels of PM in the outdoor air presented greater ocular surface alterations. Thus, ST, SF, and SLG values could be used as convenient indicators of adverse health effects due to exposure to air pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.