Quercetin is a flavonoid widely studied as a chemopreventive agent in different types of cancer. Previously, we reported that quercetin has a chemopreventive effect on the liver-induced preneoplastic lesions in rats. Here, we evaluated if quercetin was able not only to prevent but also to reverse rat liver preneoplastic lesions. We used the modified resistant hepatocyte model (MRHM) to evaluate this possibility. Treatment with quercetin was used 15 days after the induction of preneoplastic lesions. We found that quercetin reverses the number of preneoplastic lesions and their areas. Our results showed that quercetin downregulates the expression of EGFR and modulates this signaling pathway in spite of the activated status of EGFR as detected by the upregulation of this receptor, with respect to that observed in control rats. Besides, quercetin affects the phosphorylation status of Src-1, STAT5, and Sp-1. The better status of the liver after the treatment with quercetin could also be confirmed by the recovery in the expression of IGF-1. In conclusion, we suggest that quercetin reversed preneoplastic lesions by EGFR modulation and the activation state of Src, STAT5, and Sp1, so as the basal IGF-1.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, irreversible, and highly fatal disease. It is characterized by the increased activation of both fibroblast and myofibroblast that results in excessive extracellular matrix (ECM) deposition. Extracellular vesicles (EVs) have been described as key mediators of intercellular communication in various pathologies. However, the role of EVs in the development of IPF remains poorly understood. This study aimed to characterize the differentially expressed proteins contained within EVs cargo derived from the fibroblast cell lines LL97A (IPF-1) and LL29 (IPF-2) isolated from lungs bearing IPF as compared to those derived from the fibroblast cell lines CCD8Lu (NL-1) and CCD19Lu (NL-2) isolated from healthy donors. Isolated EVs were subjected to label-free quantitative proteomic analysis by LC-MS/MS, and as a result, 331 proteins were identified. Differentially expressed proteins were obtained after the pairwise comparison, including all experimental groups. A total of 86 differentially expressed proteins were identified in either one or more comparison groups. Of note, proteins involved in fibrogenic processes, such as tenascin-c (TNC), insulin-like-growth-factor-binding protein 7 (IGFBP7), fibrillin-1 (FBN1), alpha-2 collagen chain (I) (COL1A2), alpha-1 collagen chain (I) (COL1A1), and lysyl oxidase homolog 1 (LOXL1), were identified in EVs cargo isolated from IPF cell lines. Additionally, KEGG pathway enrichment analysis revealed that differentially expressed proteins participate in focal adhesion, PI3K-Akt, and ECM–receptor interaction signaling pathways. In conclusion, our findings reveal that proteins contained within EVs cargo might play key roles during IPF pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.