Tomato fruit is rich in antioxidant compounds such as lycopene and β-carotene. The beneficial effects of the bioactive compounds of tomato fruit have been documented as anticancer activities. The objective of this research was to determine whether arsenic (As) causes changes in the content of antioxidant compounds in tomato fruits and whether Silicon nanoparticles (SiO2 NPs) positively influence them. The effects on fruit quality and non-enzymatic antioxidant compounds were determined. The results showed that As decreased the oxide-reduction potential (ORP), while lycopene and β-carotene were increased by exposure to As at a low dose (0.2 mg L−1), and proteins and vitamin C decreased due to high doses of As in the interaction with SiO2 NPs. A dose of 250 mg L−1 of SiO2 NPs increased glutathione and hydrogen peroxide (H2O2), and phenols decreased with low doses of As and when they interacted with the NPs. As for the flavonoids, they increased with exposure to As and SiO2 NPs. The total antioxidant capacity, determined by the ABTS (2,2´-azino-bis[3-ethylbenzthiazolin-6-sulfonic acid]) test, showed an increase with the highest dose of As in the interaction with SiO2 NPs. The application of As at low doses induced a greater accumulation of bioactive compounds in tomato fruit; however, these compounds decreased in high doses as well as via interaction with SiO2 NPs, indicating that there was an oxidative burst.
150-50-250) and the control. The experimental design was completely randomized blocks with three replications for each treatment. The experimental unit was a stump with stems of A. purpurata. For the soil, the concentrations of organic C, total N, available P and exchangeable K were determined. For the foliage, N, P and K contents were determined. For the stump, the number of stems, the commercial and the noncommercial biomass were determined. For the stem, length, diameter, flower diameter and flower length were determined. Fertilized soils had an increase in C (40%), N (47%), P (83%) and K (56%) after 40 days. One year after the addition of fertilizers, the soils maintained acceptable nutritional levels for production. The Bokashi fertilizer increased the concentration of P (9.5%) and K (8.3%) in the foliage of plants from Medellín and Madero. Liquid humus increased N (16%) in the foliage from Ignacio Allende. When fertilized with fermented manure and compost, the plants increased the number of stems (35.3%), total biomass (35.5%), stem length (19.2%), stem diameter (16%), flower diameter (9.5%), and flower length (12.3%).
An experiment was conducted in field for three years to assess the sustainability of aquatic plants Leersia hexandra, Cyperus articulatus, and Eleocharis palustris for use in the removal of total hydrocarbons of weathered oil in four areas contaminated with 60916-119373 mg/kg of hydrocarbons. The variables evaluated were coverage of plant, dry matter, density of plant growth-promoting rhizobacteria, and the removal of total weathered oil. The variables showed statistical differences (p = 0.05) due to the effects of time and the amount of oil in the soil. The three aquatic plants survived on the farm during the 36-month evaluation. The grass L. hexandra yielded the greatest coverage of plant but was inhibited by the toxicity of the oil, which, in contrast, stimulated the coverage of C. articulatus. The rhizosphere of L. hexandra in control soil was more densely colonized by N-fixing bacteria, while the density of phosphate and potassium solubilizing rhizobacteria was stimulated by exposure to oil. C. articulatus coverage showed positive relationship with the removal of weathered oil; positive effect between rhizosphere and L. hexandra grass coverage was also identified. These results contributed to the removal of weathered oil in Gleysols flooded and affected by chronic discharges of crude oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.