Exoskeleton technology has made significant advances during the last decade, resulting in a considerable variety of solutions for gait assistance and rehabilitation. The mechanical design of these devices is a crucial aspect that affects the efficiency and effectiveness of their interaction with the user. Recent developments have pointed towards compliant mechanisms and structures, due to their promising potential in terms of adaptability, safety, efficiency, and comfort. However, there still remain challenges to be solved before compliant lower limb exoskeletons can be deployed in real scenarios. In this review, we analysed 52 lower limb wearable exoskeletons, focusing on three main aspects of compliance: actuation, structure, and interface attachment components. We highlighted the drawbacks and advantages of the different solutions, and suggested a number of promising research lines. We also created and made available a set of data sheets that contain the technical characteristics of the reviewed devices, with the aim of providing researchers and end-users with an updated overview on the existing solutions. Electronic supplementary material The online version of this article (10.1186/s12984-019-0517-9) contains supplementary material, which is available to authorized users.
Benchmarks have long been used to verify and compare the readiness level of different technologies in many application domains. In the field of wearable robots, the lack of a recognized benchmarking methodology is one important impediment that may hamper the efficient translation of research prototypes into actual products. At the same time, an exponentially growing number of research studies are addressing the problem of quantifying the performance of robotic exoskeletons, resulting in a rich and highly heterogeneous picture of methods, variables and protocols. This review aims to organize this information, and identify the most promising performance indicators that can be converted into practical benchmarks. We focus our analysis on lower limb functions, including a wide spectrum of motor skills and performance indicators. We found that, in general, the evaluation of lower limb exoskeletons is still largely focused on straight walking, with poor coverage of most of the basic motor skills that make up the activities of daily life. Our analysis also reveals a clear bias towards generic kinematics and kinetic indicators, in spite of the metrics of human-robot interaction. Based on these results, we identify and discuss a number of promising research directions that may help the community to attain a com-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.