Our data provide new insights into the mechanism involves in the symbiotic interaction that establish legumes infected by crack entry and suggest that ROS response shows differences compared with legumes invaded by IT formation.
Synergism between beneficial rhizobacteria and fungal pathogens is poorly understood. Therefore, evaluation of co-inoculation of bacteria that promote plant growth by different mechanisms in pathogen challenged plants would contribute to increase the knowledge about how plants manage interactions with different microorganisms. The goals of this work were a) to elucidate, in greenhouse experiments, the effect of co-inoculation of peanut with Bradyrhizobium sp. SEMIA6144 and the biocontrol agent Bacillus sp. CHEP5 on growth and symbiotic performance of Sclerotium rolfsii challenged plants, and b) to evaluate field performance of these bacteria in co-inoculated peanut plants. The capacity of Bacillus sp. CHEP5 to induce systemic resistance against S. rolfsii was not affected by the inoculation of Bradyrhizobium sp. SEMIA6144. This microsymbiont, protected peanut plants from the S. rolfsii detrimental effect, reducing the stem wilt incidence. However, disease incidence in plants inoculated with the isogenic mutant Bradyrhizobium sp. SEMIA6144 V2 (unable to produce Nod factors) was as high as in pathogen challenged plants. Therefore, Bradyrhizobium sp. SEMIA6144 Nod factors play a role in the systemic resistance against S. rolfsii. Bacillus sp. CHEP5 enhanced Bradyrhizobium sp. SEMIA6144 root surface colonization and improved its symbiotic behavior, even in S. rolfsii challenged plants. Results of field trials confirmed the Bacillus sp. CHEP5 ability to protect against fungal pathogens and to improve the yield of extra-large peanut seeds from 2.15% (in Río Cuarto) to 16.69% (in Las Vertientes), indicating that co-inoculation of beneficial rhizobacteria could be a useful strategy for the peanut production under sustainable agriculture system.
Arsenic (As)-polluted groundwater constitutes a serious problem for peanut plants, as roots can accumulate the metalloid in their edible parts. Characterization of stress responses to As may help to detect potential risks and identify mechanisms of tolerance, being the induction of oxidative stress a key feature. Fifteen-day old peanut plants were treated with arsenate in order to characterize the oxidative stress indexes and antioxidant response of the legume under realistic groundwater doses of the metalloid. Superoxide anion (O) and hydrogen peroxide (HO) histochemical staining along with the activities of NADPH oxidase, superoxide dismutase (SOD), catalase (CAT) and thiol (glutathione and thioredoxins) metabolism were determined in roots. Results showed that at 20 μM HAsO, peanut growth was reduced and the root architecture was altered. O and HO accumulated at the root epidermis, while lipid peroxidation, NADPH oxidase, SOD, CAT and glutathione S-transferase (GST) activities augmented. These variables increased with increasing As concentration (100 μM) while glutathione reductase (GR) and glutathione peroxidase/peroxiredoxin (GPX/PRX) were significantly decreased. These findings demonstrated that the metalloid induced physiological and biochemical alterations, being the NADPH oxidase enzyme implicated in the oxidative burst. Additionally, the strong induction of GST activity, even at the lowest HAsO doses studied, can be exploited as suitable biomarker of As toxicity in peanut plants, which may help to detect risks of As accumulation and select tolerant cultivars.
Drought stress is one of the most important environmental factors that affect plant growth and limit biomass production. Most studies focus on drought stress development but the reversibility of the effects receives less attention. Therefore, the present work aims to explore the biological nitrogen fixation (BNF) of the symbiotic association between peanut (Arachis hypogaea L.) and Bradyrhizobium sp. during a drought–recovery cycle with a focus on the response of enzyme activity and gene expression of the antioxidant system. Peanuts exposed to drought stress had impaired BNF, as indicated by lower nitrogenase activity, and decreased leghaemoglobin content; the latter was reversed to control values upon rehydration. Previous results demonstrated that reactive oxygen species (O2·− and H2O2) were accumulated as a consequence of drought stress, suggesting that nodules experience oxidative stress. In addition, marker transcripts responsive to drought, abscisic acid and H2O2 were upregulated. Increased transcript levels of glutathione reductase were associated with an increased enzyme activity but superoxide dismutase and glutathione S-transferase activities were unchanged, despite upregulated gene transcription. In contrast, increased activity of ascorbate peroxidase (APX) was unrelated with changes in cytosolic APX transcript levels suggesting isogene specificity. In conclusion, the work exemplarily demonstrates the efficient and dynamic regulation of antioxidant enzymes and marker compounds during drought cycling, which is likely to be a prerequisite for functional optimisation of nodule metabolism.
Cadmium (Cd) is a well known heavy metal considered as one of the most toxic metals on Earth, affecting all viable cells that are exposed even at low concentration. It is introduced to agricultural soils mainly by phosphate fertilizers and causes many toxic symptoms in cells. Phytochelatins (PCs) are non-protein thiols which are involved in oxidative stress protection and are strongly induced by Cd. In this work, we analyzed metal toxicity as well as PCs implication on protection of peanut plants exposed to Cd. Results showed that Cd exposure induced a reduction of peanut growth and produced changes in the histological structure with a deposit of unknown material on the epidermal and endodermal cells. When plants were exposed to 10 μM Cd, no modification of chlorophyll, lipid peroxides, carbonyl groups, or hydrogen peroxide (H₂O₂) content was observed. At this concentration, peanut leaves and roots glutathione (GSH) content decreased. However, peanut roots were able to synthesize different types of PCs (PC2, PC3, PC4). In conclusion, PC synthesis could prevent metal disturbance on cellular redox balance, avoiding oxidative damage to macromolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.