Abstract-In this paper, a folded stepped impedance resonator (SIR), modified by adding an inner quasi-lumped SIR stub, is used as a basis block for a new implementation of dual-band bandpass filters. The main advantage of the proposed filter is to make it possible to independently control the electrical features of the first and second bands. The behavior of the first band basically depends on the geometry of the outer folded SIR. The second band, however, is strongly influenced by the presence of the inner stub. Additional design flexibility is achieved by allowing the inner stub to be located at an arbitrary position along the high impedance line section of the main SIR. The position of the tapped input and output lines can be optimized in order to reach a reasonable matching of the filter at the central frequencies of both passbands. Some designs are reported to illustrate the possibilities of the proposed structure. Experimental verification has been included.
Abstract-A new type of miniaturized stepped impedance resonator (SIR) for bandpass filter applications is proposed in this paper. The new resonator incorporates a ground plane window with a floating conductor in the backside of the substrate. The ground plane window increase the characteristic impedance of the lines used to implement the inductive region of the quasi-lumped resonator, thus allowing some size reduction. Moreover, the presence of a floating conducting patch printed below the capacitive region of the resonator pushes up the first spurious band of the filter. A meaningful improvement of its out-of-band rejection level is then achieved. The coupling between adjacent resonators is also enhanced thus leading to wider achievable bandwidths. Some filter designs using the new resonator and other standard resonators are included for comparison purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.