BackgroundCannabis addiction is a chronically relapsing disorder lacking effective treatment. Regular cannabis consumption typically begins during adolescence, and this early cannabinoid exposure may increase the risk for drug addiction in adulthood.ObjectiveThis study investigates the development of cannabis addiction-like behavior in adult mice after adolescent exposure to the main psychoactive component of cannabis, Δ9-tetrahydrocannabinol (THC).MethodsAdolescent male mice were exposed to 5 mg/kg of THC from postnatal days 37 to 57. Operant self-administration sessions of WIN 55,212-2 (12.5 μg/kg/infusion) were conducted for 10 days. Mice were tested for three addiction-like criteria (persistence of response, motivation, and compulsivity), two parameters related to craving (resistance to extinction and drug-seeking behavior), and two phenotypic vulnerability traits related to substance use disorders (impulsivity and reward sensitivity). Additionally, qPCR assays were performed to detect differentially expressed genes in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), dorsal striatum, and hippocampus (HPC) of “addicted” and “non-addicted” mice.ResultsAdolescent THC exposure did not modify WIN 55,212-2 reinforcement nor the development of cannabis addiction-like behavior. Inversely, THC pre-exposed mice displayed impulsive-like behavior in adulthood, which was more pronounced in mice that developed the addiction-like criteria. Moreover, downregulated drd2 and adora2a gene expression in NAc and HPC was revealed in THC pre-exposed mice, as well as a downregulation of drd2 expression in mPFC of vehicle pre-treated mice that developed addiction-like behaviors.DiscussionThese findings suggest that adolescent THC exposure may promote impulsivity-like behavior in adulthood, associated with downregulated drd2 and adora2a expression in NAc and HPC.
We have established for the first time a mouse model of cannabinoid addiction using WIN 55,212–2 intravenous self-administration (0.0125 mg/kg/infusion) in C57Bl/6J mice. This model allows to evaluate the addiction criteria by grouping them into 1) persistence of response during a period of non-availability of the drug, 2) motivation for WIN 55,212–2 with a progressive ratio, and 3) compulsivity when the reward is associated with a punishment such as an electric foot-shock, in agreement with the Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-5). This model also allows to measure two parameters that have been related with the DSM-5 diagnostic criteria of craving, resistance to extinction and reinstatement, and two phenotypic traits suggested as predisposing factors, impulsivity and sensitivity to reward. We found that 35.6% of mice developed the criteria of cannabinoid addiction, allowing to differentiate between resilient and vulnerable mice. Therefore, we have established a novel and reliable model to study the neurobiological correlates underlying the resilience or vulnerability to develop cannabinoid addiction. This model included the chemogenetic inhibition of neuronal activity in the medial prefrontal cortex to the nucleus accumbens pathway to assess the neurobiological substrate of cannabinoid addiction. This model will shed light on the neurobiological substrate underlying cannabinoid addiction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.