This study introduces a new synthesis route for obtaining homogeneous chitosan (CS)-silica hybrid aerogels with CS contents up to 10 wt%, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as coupling agent, for tissue engineering applications. Aerogels were obtained using the sol-gel process followed by CO2 supercritical drying, resulting in samples with bulk densities ranging from 0.17 g/cm3 to 0.38 g/cm3. The textural analysis by N2-physisorption revealed an interconnected mesopore network with decreasing specific surface areas (1230–700 m2/g) and pore sizes (11.1–8.7 nm) by increasing GPTMS content (2–4 molar ratio GPTMS:CS monomer). In addition, samples exhibited extremely fast swelling by spontaneous capillary imbibition in PBS solution, presenting swelling capacities from 1.75 to 3.75. The formation of a covalent crosslinked hybrid structure was suggested by FTIR and confirmed by an increase of four hundred fold or more in the compressive strength up to 96 MPa. Instead, samples synthesized without GPTMS fractured at only 0.10–0.26 MPa, revealing a week structure consisted in interpenetrated polymer networks. The aerogels presented bioactivity in simulated body fluid (SBF), as confirmed by the in vitro formation of hydroxyapatite (HAp) layer with crystal size of approximately 2 µm size in diameter. In vitro studies revealed also non cytotoxic effect on HOB® osteoblasts and also a mechanosensitive response. Additionally, control cells grown on glass developed scarce or no stress fibers, while cells grown on hybrid samples showed a significant (p < 0.05) increase in well-developed stress fibers and mature focal adhesion complexes.
We report the synthesis of mesoporous silica–gelatin hybrid aerogels with 15, 25, and 30 wt. % gelatin contents, using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a coupling agent, for tissue-engineering applications. Aerogels were obtained using a one-step sol–gel process followed by CO2 supercritical drying, resulting in crack-free monolith samples with bulk densities ranging from 0.41 g cm−3 to 0.66 g cm−3. Nitrogen adsorption measurements revealed an interconnected mesopore network and a general decrease in the textural parameters: specific surface areas (651–361 m2 g−1), pore volume (1.98–0.89 cm3 g−1), and pore sizes (10.8–8.6 nm), by increasing gelatin content. Thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and uniaxial compression experiments confirmed that the structure, thermal properties and mechanical behavior of these aerogels changed significantly when the concentration of gelatin reached 25 wt.%, suggesting that this composition corresponds to the percolation threshold of the organic phase. In addition, the samples exhibited hydrophilic behavior and extremely fast swelling in phosphate-buffered saline (PBS), with swelling ratios from 2.32 to 3.32. Furthermore, in vitro bioactivity studies revealed a strong relationship between the kinetics of the nucleation and growth processes of hydroxyapatite in simulated body fluid (SBF) and the gelatin content. The live/dead assay revealed no cytotoxicity in HOB® osteoblasts in vitro and a positive influence on cell growth, focal adhesion development, and cytoskeletal arrangement for cell adhesion. Mineralization assays confirmed the positive effects of the samples on osteoblast differentiation. The biomaterials described are versatile, can be easily sterilized and are suitable for a wide range of applications in bone tissue-engineering, either alone or in combination with bioactive-reinforced phases.
The bio-oxidation of ferrous iron is a potential industrial process for the regeneration of ferric iron in the removal of H 2 S. In the first stage, H 2 S is selectively oxidized to elemental sulfur using ferric sulfate. The ferrous sulfate produced is oxidized to ferric sulfate using Thiobacillus ferrooxidans for recycle and reuse in the process. The aim of the work described here was to investigate continuous oxidation of ferrous iron by immobilized T ferrooxidans and the factors which can directly affect the oxidation rate in order to assess the feasibility of this technique on an industrial scale. An analysis of the evolution of bioreactor performance with time (125 days) was performed in order to assess the feasibility of this technique on an industrial scale. A good oxidation rate was obtained despite the transport problems encountered due to occlusion of the porous support. On the other hand, the toxic effects due to absorption in the ferric solution of one or more compounds from the gas digester were studied using a ferric iron solution from the absorption process. The results indicate the feasibility of the biological system for the regeneration of the ferric-absorbing solution. Finally, a previous study for the design of an industrial bioreactor to regenerate ferric sulfate solutions, used to remove H 2 S from biogas in a wastewatertreatment plant (Jerez de la Frontera, Spain), is introduced. Good biological oxidation performances have been obtained using a pilot plant bioreactor of 500 dm 3 .
Microbial oxidation of ferrous iron may be a viable alternative method of producing ferric sulfate, which is a reagent used for removal of H(2)S from biogas. The paper introduces a kinetic study of the biological oxidation of ferrous iron by Thiobacillus ferrooxidans immobilized on biomass support particles (BSP) composed of polyurethane foam. On the basis of the data obtained, a mathematical model for the bioreactor was subsequently developed. In the model described here, the microorganisms adhere by reversible physical adsorption to the ferric precipitates that are formed on the BSP. The model can also be considered as an expression for the erosion of microorganisms immobilized due to the agitation of the medium by aeration.
In this work, the influence that an aeration interruption may have upon acetic acid fermentation processes is studied. As a result, a kinetic model is proposed that foretells the cellular specific death rate in situations lacking in oxygen. Such a model collects the combined influences of substrate (ethanol) and product (acetic acid).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.