The manual archaeological projectile point morphological classification is an extensive and complex process since it involves a large number of categories. This article presents an algorithm that automatically makes this process, based on the projectile point digital image and using a classification scheme according to global archaeological approaches. The algorithm supports different conditions such as changes in scale and quality of the image. Moreover, it requires only a uniform background and an approximate north--south projectile point orientation. The principal computer methods that compose the algorithm are the curvature scale space map (CSS-map), the gradient contour on the projectile point, and the support vector machines (SVM) algorithm. Finally, the classifier was trained and tested on a dataset of approximately 800 projectile points images, and the results have shown a better performance than other shape descriptors such as Pyramid of Histograms of Orientation Gradients (PHOG), Histogram of Orientation Shape Context (HOOSC) (both used in a bag-of-words context), and geometric moment invariants (Hu moments).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.