Hardness of human tooth, both in enamel and dentin, has been measured at different sites using a Vicker's diamond. In this work we show that these values are almost constant all along the enamel and dentin thicknesses. Indentations were done from outer enamel surface to inner dentin layer, going through the enamel-dentin junction, both in transverse and longitudinal samples. Geometrical well-shape indentation uniformity was checked both with light and with scanning electron microscopes, and the chemical composition of the tooth was analyzed with characteristic X-ray energy dispersive spectroscopy. Hardness measurements were in the range from 270 to 360 VHN for enamel and 50 to 60 VHN for dentin. Cervical zone in longitudinal section showed the lowest value while in transverse sections the highest. All the hardness values were statically significative. Tour results indicate that the difference between enamel and dentin hardness has nothing to do with the content of Na, Cl and Mg, but the percentage of organic and inorganic materials in enamel and dentin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.