Nanoparticles can reach the blood and cause inflammation, suggesting that nanoparticles-endothelial cells interactions may be pathogenically relevant. We evaluated the effect of titanium dioxide nanoparticles (TiO₂) on proliferation, death, and responses related with inflammatory processes such as monocytic adhesion and expression of adhesion molecules (E- and P-selectins, ICAM-1, VCAM-1, and PECAM-1) and with inflammatory molecules (tissue factor, angiotensin-II, VEGF, and oxidized LDL receptor-1) on human umbilical vein endothelial cells (HUVEC). We also evaluated the production of reactive oxygen species, nitric oxide production, and NF-κB pathway activation. Aggregates of TiO₂ of 300 nm or smaller and individual nanoparticles internalized into HUVEC inhibited proliferation strongly and induced apoptotic and necrotic death starting at 5 μg/cm². Besides, TiO₂ induced activation of HUVEC through an increase in adhesion and in expression of adhesion molecules and other molecules involved with the inflammatory process. These effects were associated with oxidative stress and NF-κB pathway activation. In conclusion, TiO₂ induced HUVEC activation, inhibition of cell proliferation with increased cell death, and oxidative stress.
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in their composition at a cellular and tissue level. Current isolation methods fail to efficiently separate EV subtypes for proteomic and functional analysis. The aim of this study was to develop a reproducible and scalable isolation workflow to increase the yield and purity of EV preparations. Through a combination of polymer‐based precipitation and size exclusion chromatography (Pre‐SEC), we analyzed two subsets of EVs based on their CD9, CD63 and CD81 content and elution time. EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot assays. To evaluate differences in protein composition between the early‐ and late‐eluting EV fractions, we performed a quantitative proteomic analysis of MDA‐MB‐468‐derived EVs. We identified 286 exclusive proteins in early‐eluting fractions and 148 proteins with a differential concentration between early‐ and late‐eluting fractions. A density gradient analysis further revealed EV heterogeneity within each analyzed subgroup. Through a systems biology approach, we found significant interactions among proteins contained in the EVs which suggest the existence of functional clusters related to specific biological processes. The workflow presented here allows the study of EV subtypes within a single cell type and contributes to standardizing the EV isolation for functional studies.
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in industry and daily life. TiO2 NPs can penetrate into the body, translocate from the lungs into the circulation and come into contact with cardiac cells. In this work, we evaluated the toxicity of TiO2 NPs on H9c2 rat cardiomyoblasts. Internalization of TiO2 NPs and their effect on cell proliferation, viability, oxidative stress and cell death were assessed, as well as cell cycle alterations. Cellular uptake of TiO2 NPs reduced metabolic activity and cell proliferation and increased oxidative stress by 19-fold measured as H2DCFDA oxidation. TiO2 NPs disrupted the plasmatic membrane integrity and decreased the mitochondrial membrane potential. These cytotoxic effects were related with changes in the distribution of cell cycle phases resulting in necrotic death and autophagy. These findings suggest that TiO2 NPs exposure represents a potential health risk, particularly in the development of cardiovascular diseases via oxidative stress and cell death.
Propolis is a resinous beehive product that has been used worldwide in traditional medicine to prevent and treat colds, wounds, rheumatism, heart disease and diabetes. Diabetic nephropathy is the final stage of renal complications caused by diabetes and for its treatment there are few alternatives. The present study aimed to determine the chemical composition of three propolis samples collected in Chihuahua, Durango and Zacatecas and to evaluate the effect of pinocembrin in a model of diabetic nephropathy in vivo. Previous research demonstrated that propolis of Chihuahua possesses hypoglycemic and antioxidant activities. Two different schemes were assessed, preventive (before renal damage) and corrective (once renal damage is established). In the preventive scheme, pinocembrin treatment avoids death of the rats, improves lipid profile, glomerular filtration rate, urinary protein, avoid increases in urinary biomarkers, oxidative stress and glomerular basement membrane thickness. Whereas, in the corrective scheme, pinocembrin only improves lipid profile without showing improvement in any other parameters, even pinocembrin exacerbated the damage. In conclusion, pinocembrin ameliorates diabetic nephropathy when there is no kidney damage but when it is already present, pinocembrin accelerates kidney damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.