Nanoparticles can reach the blood and cause inflammation, suggesting that nanoparticles-endothelial cells interactions may be pathogenically relevant. We evaluated the effect of titanium dioxide nanoparticles (TiO₂) on proliferation, death, and responses related with inflammatory processes such as monocytic adhesion and expression of adhesion molecules (E- and P-selectins, ICAM-1, VCAM-1, and PECAM-1) and with inflammatory molecules (tissue factor, angiotensin-II, VEGF, and oxidized LDL receptor-1) on human umbilical vein endothelial cells (HUVEC). We also evaluated the production of reactive oxygen species, nitric oxide production, and NF-κB pathway activation. Aggregates of TiO₂ of 300 nm or smaller and individual nanoparticles internalized into HUVEC inhibited proliferation strongly and induced apoptotic and necrotic death starting at 5 μg/cm². Besides, TiO₂ induced activation of HUVEC through an increase in adhesion and in expression of adhesion molecules and other molecules involved with the inflammatory process. These effects were associated with oxidative stress and NF-κB pathway activation. In conclusion, TiO₂ induced HUVEC activation, inhibition of cell proliferation with increased cell death, and oxidative stress.
Exposure to airborne particles has been associated with an increase in cardiopulmonary events. Endothelial cells could be playing an important role in the response to airborne particles due their involvement in proinflammatory events, and there is some evidence of particle translocation from lung into circulation. One of the initiating events of inflammation is endothelial activation. We determined the concentration-response effect of a particulate matter with different aerodynamic sizes (PM2.5 [particulate matter with aerodynamic diameter of 2.5 microm and less] and PM10 [particulate matter with aerodynamic diameter of 10 microm and less]) obtained from Mexico City on human umbilical vein endothelial cells (HUVEC). The adhesion of monocytic U937 cells to HUVEC and the expression of early (E- and P-selectins) and late (ICAM-1, PECAM-1, VCAM-1) adhesion molecules were tested. Adhesion of U937 cells to HUVEC was evaluated by coculture experiments using [3H]thymidine-labeled U937 cells and the expression of adhesion molecules was evaluated by flow cytometry. Tumor necrosis factor (TNF)-alpha was used as a positive control of endothelial activation. Our results showed that both PM2.5 and PM10 induced the adhesion of U937 cells to HUVEC, and their maximal effect was observed at 20 microg/cm2. This adhesion was associated with an increase in the expression of all adhesion molecules evaluated for PM10, and E-selectin, P-selectin, and ICAM-1 for PM2.5. In general, maximum expression of adhesion molecules induced by PM2.5 and PM10 was obtained with 20 microg/cm2; however, PM10-induced expression was observed from 5 microg/cm2. E-selectin and ICAM-1 had the strongest expression in response to particles. In conclusion, PM2.5 and PM10 induce the activation of HUVEC, leading to monocytic adhesion via the expression of adhesion molecules, suggesting that these particles may participate in the development of inflammatory diseases. The role of these events in the development of diseases such as atherosclerosis is likely to be evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.