This study evaluated pre-slaughter stress and its influence on the stress indicators, quality characteristics and sensory characteristics of Nile tilapia fillets. To this end, two experiments were conducted: (1) two transportation times (60 and 240 min), with a density of 200 kg m-3 , were compared to control treatment fish (in which the fish were removed from the net cage and immediately euthanized); and (2) two transportation densities (100 and 400 kg m-3), transported for 180 min, compared with control treatment fish. In experiment 1, the transportation time of 60 min resulted in higher levels of serum cortisol and plasma glucose compared to the transportation time of 240 min and the control. Fish fillets transported for 240 min had higher water-holding capacity, less water loss by pressure and higher levels of juiciness compared to fish transported for 60 min. Color, pH and water loss during cooking were not affected by transportation time. In experiment 2, transportation densities of 100 and 400 kg m-3 did not significantly affect the stress indicators nor the instrumental quality parameters of the fillets, but fish transported at 400 kg m-3 showed better visual acceptance by panellists.
Integration of genomic data with gene network analysis can be a relevant strategy for unraveling genetic mechanisms. It can be used to explore shared biological processes between genes, as well as highlighting transcription factors (TFs) related to phenotypes of interest. Unlike other species, gene–TF network analyses have not yet been well applied to horse traits. We aimed to (1) identify candidate genes associated with horse performance via systematic review, and (2) build biological processes and gene–TF networks from the identified genes aiming to highlight the most candidate genes for horse performance. Our systematic review considered peer-reviewed articles using 20 combinations of keywords. Nine articles were selected and placed into groups for functional analysis via gene networks. A total of 669 candidate genes were identified. From that, gene networks of biological processes from each group were constructed, highlighting processes associated with horse performance (e.g., regulation of systemic arterial blood pressure by vasopressin and regulation of actin polymerization and depolymerization). Transcription factors associated with candidate genes were also identified. Based on their biological processes and evidence from the literature, we identified the main TFs related to horse performance traits, which allowed us to construct a gene–TF network highlighting TFs and the most candidate genes for horse performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.