Evasion or subversion of host immune responses have been shown for a variety of microorganisms, and this might be the case for Trichophyton rubrum, the most common pathogenic fungus causing chronic dermatophytosis in humans. Keratinocytes, the main epidermal cells, have important roles as a first defense against microbial challenges in local immune reactions. Epidermal keratinocytes express several Toll-like receptors and produce host defense peptides, cytokines and chemokines in response to various stimuli. We analyzed the expression of Toll-Like receptor TLR2, TLR4, TLR6, and Human Beta Defensin (HBD)-1, HBD-2, Interleukin IL-1b and IL-8 production, when exposing primary keratinocyte cultures to T. rubrum. We observed changes in size and granularity of keratinocytes stimulated with either whole conidia or conidial homogenates compared to other treatments. Intact conidia decreased keratinocytes’ TLR2 and TLR6 expression without affecting that of TLR4, while conidial homogenates increased the expression of these three receptors. Interestingly, whole conidia decreased HBD-1 and HBD-2 production, whereas conidial homogenate increased it. No changes were observed in IL-1b and IL-8 production after stimulation with conidia or conidial homogenate. CONCLUSIONS. Our results suggest that: 1) Keratinocytes can recognize and respond to cell wall components of T. rubrum; 2) Viable intact conidia inhibit TLR-2 and TLR6 expression and decrease HBD-1 and HBD-2 production; 3) Conidial homogenate from T. rubrum increases the expression of TLR2, TLR4 and TLR6 and induces HBD-1 and HBD-2 production; 4) Therefore, innate immune functions of keratinocytes as the first level of local skin immunity are apparently manipulated by T. rubrum, likely to ensure its establishment, persistence and survival.
The administration of probiotics is a promising approach to reduce the prevalence of colon cancer, a multifactorial disease, with hereditary factors, as well as environmental lifestyle-related risk factors. Biogenic polyamines, putrescine, spermidine, and spermine are small cationic molecules with great roles in cell proliferation and differentiation as well as regulation of gene expression. Ornithine decarboxylase is the first rate-limiting enzyme for polyamine synthesis, and upregulation of ornithine decarboxylase activity and polyamine metabolism has been associated with abnormal cell proliferation. This paper is focused on studying the protective role of Lactobacillus casei ATCC 393 in a chemically induced mouse model of colon carcinogenesis, directing our attention on aberrant crypt foci as preneoplastic markers, and on polyamine metabolism as a possible key player in carcinogenesis. BALB/c mice were administered 1,2-dimethylhydrazine dihydrochloride (DMH) to induce colon cancer (20 mg/kg body weight, subcutaneous, twice a week for 24 weeks). L. casei ATCC 393 was given orally (10 CFU, twice a week), 2 weeks before DMH administration. Hematoxylin and eosin staining, high-performance liquid chromatography, and Western blotting were used to evaluate aberrant crypt foci, urinary polyamines, and ornithine decarboxylase expression in the colon. The experimental data showed that the preventive administration of L. casei ATCC 393 may delay the onset of cancer as it significantly reduced the number of DMH-induced aberrant crypt foci, the levels of putrescine, and the expression of ornithine decarboxylase. Hence, this probiotic strain has a prospective role in protection against colon carcinogenesis, and its antimutagenic activity may be associated with the maintenance of polyamine metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.