Understanding the diversity patterns of phytoplankton assemblages in coastal lagoons is clearly important for water management. In this study, we explored alpha and beta diversity patterns in phytoplankton communities across five Mediterranean lagoons hydrologically connected to Vistonikos Gulf. We examined the phytoplankton community composition and biomass on a monthly basis from November 2018 to October 2019. For this, water samples were collected from seven inshore, brackish and coastal waters, sampling sites covering a wide range of conductivity. We found significant spatial and temporal differences in phytoplankton alpha diversity and in phytoplankton biomass metrics explained by the high variation of conductivity. Evenness remained low throughout the study period, reflecting significant dominance of several phytoplankton blooms. Harmful algal blooms of Prorocentrum minimum, Alexandrium sp., Rhizosolenia setigera and Cylindrotheca closterium occurred. The system’s species pool was characterized by relatively high phytoplankton beta diversity (average ~0.7) resulting from high temporal species turnover (90%). Overall, alpha and beta diversity components were indicative of rather heterogeneous phytoplankton communities which were associated with the high differences in conductivity among the sampling sites.
The possibility of simultaneous production of halophyte and euryhaline fish creates huge interest in both commercial aquaponics systems and in research. The aim of the present study was to investigate the effect of three different salinities (8, 14, and 20 ppt) on the growth performance and survival rate of sea bream (Sparus aurata) and rock samphire (Crithmum maritimum) in an experimental brackish aquaponic system. Furthermore, induction of heat shock proteins (Hsps) and phosphorylation of mitogen-activated protein kinases (MAPKs) were assessed through the sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot analysis. A total number of 234 sea bream individuals were divided into nine autonomous aquaponic systems. The experiment lasted 45 days. In total, 54 individuals of rock samphire were used and were distributed into groups of six individuals per hydroponic tank using the raft method. Water quality showed stable fluctuation throughout the experiment, strongly supporting fish and plant growth performance and survival in both treatments. The results show that better growth performance for both sea bream and rock samphire (height increase) was evident in salinity 8 ppt compared to salinities 14 ppt and 20 ppt. Minimal or mild histopathological alterations were detected in gills, midgut, and liver for all three salinity groups. Exposure to different salinities modified Hsp60 and MAPKs expression in a tissue- and time-specific manner. During exposure to 8 ppt, constant Hsp60 levels and phosphorylation of MAPKs at 15 days may indicate a prominent protective role in the gills. The results show that sea bream and rock samphire can be used in brackish aquaponics systems with satisfactory growth performances, thus allowing for a range of commercial applications generating interest in their production.
Natural and anthropogenic pressures in inland waters induce molecular response mechanisms in organisms as a defense against such multiple stressors. We studied, for the first time, the expression of the stress proteins, heat shock proteins (HSP) and mitogen-activated proteins kinase (MAPK), in a Daphnia magna natural population as a response to environmental changes in a heavily modified water body (Lake Koronia, Northern Greece). In parallel, the water physicochemical parameters, nutrients’ concentration and phytoplankton abundance were measured. Our results showed fluctuations of the proteins’ levels (HSP70, HSP90, phospho-p38 MAPK, phospho-p44/42 MAPK) providing evidence of their expression in situ. HSP70 showed an increasing tendency while for HSP90, no tendency was recorded. The MAPKs’ members followed a reverse pattern compared to each other. The differential expression of HSP and MAPK members indicates that D. magna in Lake Koronia experienced stressors such as increasing temperature, salinity and increased nutrient concentrations, high pH values and variations in phytoplankton abundance that triggered their activation. These in situ findings suggest that HSP and MAPK expression patterns have the potential to be used as biomarkers of stress factors in D. magna, for effective biomonitoring and setting ecological restoration targets.
Biodiversity records are recognized as important for both diversity conservation and ecological studies under the light of global threats faced by aquatic ecosystems. Here, the checklist of Greek rotifer species is presented based on a literature review, as well as current data from 38 inland water bodies. A total of 172 Monogononta rotifer species were recorded to belong to 21 families and 44 genera. The most diverse genera were Lecane, Brachionus, and Trichocerca, accounting for 34% of the recorded species. Trichocerca similis, Brachionus angularis, Filinia longiseta, Asplanchna priodonta, Keratella tecta, Keratella quadrata, and Keratella cochlearis were the most frequent species with a high frequency of occurrence over 60%, with K. cochlearis being the most frequently recorded (86%). Furthermore, we used rarefaction indices, and the potential richness was estimated at 264 taxa. More sampling efforts aiming at littoral species, as well as different habitats such as temporary pools, ponds, and rivers, are expected to increase the known rotifer fauna in Greece. We expect that additional molecular analyses will be needed to clarify the members of species complexes, likely providing additional species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.