OBJECTIVE:To analyze glucose transporter 1 expression patterns in malignant tumors of various cell types and evaluate their diagnostic value by immunohistochemistry.INTRODUCTION:Glucose is the major source of energy for cells, and glucose transporter 1 is the most common glucose transporter in humans. Glucose transporter 1 is aberrantly expressed in several tumor types. Studies have implicated glucose transporter 1 expression as a prognostic and diagnostic marker in tumors, primarily in conjunction with positron emission tomography scan data.METHODS:Immunohistochemistry for glucose transporter 1 was performed in tissue microarray slides, comprising 1955 samples of malignant neoplasm from different cell types.RESULTS:Sarcomas, lymphomas, melanomas and hepatoblastomas did not express glucose transporter 1. Forty-seven per cent of prostate adenocarcinomas were positive, as were 29% of thyroid, 10% of gastric and 5% of breast adenocarcinomas. Thirty-six per cent of squamous cell carcinomas of the head and neck were positive, as were 42% of uterine cervix squamous cell carcinomas. Glioblastomas and retinoblastomas showed membranous glucose transporter 1 staining in 18.6% and 9.4% of all cases, respectively. Squamous cell carcinomas displayed membranous expression, whereas adenocarcinomas showed cytoplasmic glucose transporter 1 expression.CONCLUSION:Glucose transporter 1 showed variable expression in various tumor types. Its absence in sarcomas, melanomas, hepatoblastomas and lymphomas suggests that other glucose transporters mediate the glycolytic pathway in these tumors. The data suggest that glucose transporter 1 is a valuable immunohistochemical marker that can be used to identify patients for evaluation by positron emission tomography scan. The function of cytoplasmic glucose transporter 1 in adenocarcinomas must be further examined.
Age is the only variable found to be significantly associated with survival. Currently, surgical methods result in an excellent long-term clinical outcome. Subependymomas do not appear to be associated with NF2 mutations.
Alzheimer’s disease (AD) is characterized by progressive cognitive decline associated with a featured neuropathology (neuritic plaques and neurofibrillary tangles). Several studies have implicated oxidative damage to DNA, DNA repair, and altered cell-cycle regulation in addition to cell death in AD post-mitotic neurons. However, there is a lack of studies that systematically assess those biological processes in patients with AD neuropathology but with no evidence of cognitive impairment. We evaluated markers of oxidative DNA damage (8-OHdG, H2AX), DNA repair (p53, BRCA1, PTEN), and cell-cycle (Cdk1, Cdk4, Cdk5, Cyclin B1, Cyclin D1, p27Kip1, phospho-Rb and E2F1) through immunohistochemistry and cell death through TUNEL in autopsy hippocampal tissue samples arrayed in a tissue microarray (TMA) composed of three groups: I) “clinical-pathological AD” (CP-AD) - subjects with neuropathological AD (Braak≥IV and CERAD = B or C) and clinical dementia (CDR≥2, IQCODE>3.8); II) “pathological AD” (P-AD) - subjects with neuropathological AD (Braak≥IV and CERAD = B or C) and without cognitive impairment (CDR 0, IQCODE<3.2); and III) “normal aging” (N) - subjects without neuropathological AD (Braak≤II and CERAD 0 or A) and with normal cognitive function (CDR 0, IQCODE<3.2). Our results show that high levels of oxidative DNA damage are present in all groups. However, significant reductions in DNA repair and cell-cycle inhibition markers and increases in cell-cycle progression and cell death markers in subjects with CP-AD were detected when compared to both P-AD and N groups, whereas there were no significant differences in the studied markers between P-AD individuals and N subjects. This study indicates that, even in the setting of pathological AD, healthy cognition may be associated with a preserved repair to DNA damage, cell-cycle regulation, and cell death in post-mitotic neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.