The phenology, flower morphology, pollination mechanism and reproductive biology of Epidendrum secundum were studied in a semi-deciduous forest at the Serra do Japi (SJ), and in the Atlantic rain forest of Picinguaba, both natural reserves in the State of São Paulo, southeastern Brazil. E. secundum flowers all year round, with a flowering peak between September and January. This species is either a lithophytic or terrestrial herb in the SJ, whereas, in Picinguaba, it grows mainly in disturbed areas along roadsides. E. secundum is pollinated by several species of diurnal Lepidoptera at both study sites. In Picinguaba, where E. secundum is sympatric with E. fulgens and both share the same pollinators, pollen transference between these two species was recorded. E. secundum is self-compatible but pollinator-dependent. It is inter-compatible with E. fulgens, producing fertile seeds. In contrast to the population of the SJ, in the Picinguaba region, floral morphology is quite variable among plants and some individuals present flowers with characteristics in-between both sympatric species, suggesting that natural hybridization occasionally occurs. The anthropogenic perturbation is probably the cause of the occurrence of E. secundum in the Picinguaba region, enabling its contact with E. fulgens.
Convergence on a stereotypical syndrome of floral traits associated with pollination by oil-collecting bees has resulted in these characters not being reliable for producing monophyletic taxa, and the genus Oncidium, defined by these characters, is grossly polyphyletic. Vegetative and a few floral/inflorescence characters link these taxa with a mainly Brazilian distribution, and they were all transferred to Gomesa on this basis rather than separated from Gomesa based on their floral differences, which we hypothesize to be simple shifts in pollination strategies. Other authors have described a large number of new genera for these former members of Oncidium, but most of these are not supported by the results presented here (i.e. they are not monophyletic). A new genus, Nohawilliamsia, is described for O. orthostates because it does not fit in any currently recognized genus and is only distantly related to any other member of Oncidiinae.
The recognition of ten species of Christensonella is proposed according to the molecular and cytogenetic patterns observed. In addition, diagnostic morphological characters are presented for each recognized species. Banding patterns and chromosome counts suggest the occurrence of centric fusion/fission events, especially for C. ferdinandiana. The results suggest that 2n = 36 karyotypes evolved from 2n = 38 through descendent dysploidy. Patterns of heterochromatin distribution and other karyotypic data proved to be a valuable source of information to understand evolutionary patterns within Maxillariinae orchids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.