Undernutrition is one of the most important public health problems, affecting more than 900 million individuals around the World. It is responsible for the highest mortality rate in children and has long-lasting physiologic effects, including an increased susceptibility to fat accumulation mostly in the central region of the body, lower fat oxidation, lower resting and postprandial energy expenditure, insulin resistance in adulthood, hypertension, dyslipidaemia and a reduced capacity for manual work, among other impairments. Marked changes in the function of the autonomic nervous system have been described in undernourished experimental animals. Some of these effects seem to be epigenetic, passing on to the next generation. Undernutrition in children has been linked to poor mental development and school achievement as well as behavioural abnormalities. However, there is still a debate in the literature regarding whether some of these effects are permanent or reversible. Stunted children who had experienced catch-up growth had verbal vocabulary and quantitative test scores that did not differ from children who were not stunted. Children treated before 6 years of age in day-hospitals and who recovered in weight and height have normal body compositions, bone mineral densities and insulin production and sensitivity.
Our data show that intrauterine undernutrition: (1) induces hypertension both in the male and female offspring, hypertension being more severe in male than in female rats; (2) alters endothelium-dependent responses in aortas from the resulting offspring. The endothelial dysfunction is associated with a decrease in activity/expression of eNOS in aortas from male offspring. The mechanism involved in altered response to ACh in female offspring might be a consequence of reduction in estrogen levels leading to reduced eNOS activity.
Maternal undernutrition during critical periods of organ development is known to impair fetal growth and predispose to the development of adulthood diseases, such as hypertension, coronary heart disease and type II diabetes that are linked to low birth weight and are characterized by endothelial dysfunction. Increased oxidative stress, in rats submitted to intrauterine undernutrition, provides a potential explanation for the endothelial dysfunction development. The aim of this study was to determine the oxidative stress and its consequence on mesenteric arteriolar responses to vasoactive agents in offspring from diet-restricted dams. For this, female pregnant Wistar rats were fed either normal or 50% of normal intake diets, during the whole gestational period. In male offspring, arterial blood pressure was determined by the tail cuff method in anesthetized rats, mesenteric arteriolar reactivity and superoxide anion generation were studied using intravital microscopy and superoxide dismutase activity was determined in mesentery by spectrophotometric assay. Intrauterine undernutrition induced hypertension, decreased vasodilation to acetylcholine and bradykinin but did not alter the responses to sodium nitroprusside. Topical application of superoxide dismutase and superoxide dismutase mimetic manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin significantly improved the altered arteriolar responses to acetylcholine and bradykinin. A decreased superoxide dismutase activity and an increased superoxide anion concentration were observed in the offspring of diet-restricted dams. This study shows for the first time that intrauterine undernutrition enhances oxidative stress in vivo and relates this to the impaired endothelium-dependent vasodilation.
Fetal growth impairment can occur in pregnancy complicated by diabetes. Although several studies have focused the effects of nutritional status on intrauterine development, the long-term impact of maternal diabetes on vascular and renal function in the offspring is poorly investigated. In the present study, blood pressure profiles and renal function parameters were investigated in the offspring of diabetic rats (DO). Female rats were made diabetic throughout gestation with a single dose of streptozotocyn (STZ) 10 d before mating. After weaning, the offspring had free access to food and water. Arterial pressure was evaluated every 15 d. Functional and morphometric kidney studies were performed in newborn, 3, 6 and 12-mo-old male rats in DO and in controls, C. Although maternal diabetes did not affect nephron number in the young adult rat, glomerular hypertrophy developed from 3 mo on. Glomerular Filtration Rate and Renal Plasma Flow were observed to be significantly decreased in DO when compared with C, from 3 mo on. In DO, hypertension was observed from 8 wk on and persisted elevated throughout the experimental period (12 mo). Vascular reactivity, evaluated in mesenteric arterial bed showed a decreased endotheliumdependent vasodilatation in 12-mo-old DO animals, while preserved response to sodium nitroprusside was demonstrated. Our data show that exposure to intrauterine diabetes induced by STZ does not affect nephron number in the young offspring but can cause permanent changes in Nitric Oxide (NO)-related vascular response, which, in turn may accelerate the natural age-related nephron loss. Maternal status can affect several physiologic functions of the newborn. In addition, correlation between fetal growth conditions and susceptibility to a number of adult chronic diseases, including coronary heart disease, stroke and hypertension have been identified (1-4). Recently, we have demonstrated that maternal undernutrition promoted development of adult hypertension, impairment of the renal and endothelium functions, decreased absolute number of the nephrons and hypertrophy of the remaining glomeruli in the adult offspring (5-7). Although several experimental studies have focused the effects of the maternal undernutrition on fetal "programming" of adulthood disease, less attention has been paid to the possible in utero late effects of maternal diabetes. In fact, diabetes mellitus can impose several threats both to the mother and the offspring. Experimental and clinical studies have demonstrated that diabetic pregnancy increases the risk of intrauterine death, prematurity, perinatal mortality and congenital malformations (8 -12). Indeed, Chugh et al. (13) have demonstrated that a sustained exposure of the fetus to elevated concentration of glucose may result in diabetic embryopathy, which is characterized by a multitude of congenital birth defects, including those of the nervous, cardiovascular, skeletal, and renal systems. These malformations result from defects occurring in early organogenesis including failure of ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.