NiO has a variety of applications, mainly in the production of electrochemical sensors and of metallic nickel. In addition, it is widely used as catalysts to produce hydrogen from natural gas. In this work, hydrotalcites based on nickel-aluminum and nickel-zinc-aluminum were synthesized, calcined at 500 °C and studied by different techniques. It was observed that nickel-aluminum hydrotalcites are thermally more stable, collapsing at higher temperatures than hydrotalcites containing zinc. During calcination, aluminum is incorporated into NiO lattice, leading to a decrease in crystallographic parameters. However, zinc decreases this effect, favoring the formation of NiO with lattice parameters close to pure nickel oxide. Zinc also contributes to the formation of smaller NiO particles, which is very useful for its use as a catalyst. In addition, aluminum led to a distortion in NiO lattice, an effect that is minimized by zinc, showing that it hinders the incorporation of Al3+ in the NiO lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.