This paper presents an attempt to model the water balance in the metropolitan center landfill (MCL) in Salvador, Brazil. Aspects such as the municipal solid waste (MSW) initial water content, mass loss due to decomposition, MSW liquid expelling due to compression and those related to weather conditions, such as the amount of rainfall and evaporation are considered. Superficial flow and infiltration were modeled considering the waste and the hydraulic characteristics (permeability and soil-water retention curves) of the cover layer and simplified uni-dimensional empirical models. In order to validate the modeling procedure, data from one cell at the landfill were used. Monthly waste entry, volume of collected leachate and leachate level inside the cell were monitored. Water balance equations and the compressibility of the MSW were used to calculate the amount of leachate stored in the cell and the corresponding leachate level. Measured and calculated values of the leachate level inside the cell were similar and the model was able to capture the main trends of the water balance behavior during the cell operational period.
Os escorregamentos de encostas constituem um dos principais fenômenos causadores de desastres naturais nas cidades brasileiras, provocando, todos os anos, inúmeros prejuízos materiais e fazendo um grande número de vítimas fatais. Neste contexto, este trabalho propõe a aplicação de técnicas de aprendizado de máquina na predição de escorregamentos de encostas, de forma individualizada, no tempo e no espaço, a partir de dados provenientes de múltiplas fontes. Para isso, foi realizada a integração dos dados e foram avaliados vários algoritmos preditivos acerca da ocorrência ou não de escorregamentos de encostas. Os resultados dos experimentos mostraram que os algoritmos foram capazes de alcançar desempenho promissor.
The study modelled the methane generation for a landfill in a tropical climate in Brazil, adjusting the values of the parameters of Methane Generation Potential (Lo) and Decay Constant (k), using the IPCC numerical model and LandGEM and Biogas (CETESB) software. Adopting published data from Cell 6 (C6) of the Metropolitan Center Sanitary Landfill, 15 combinations of k and Lo were performed to determine the ranges of values that best represented the generation of CH4. The results of the study allowed to conclude that values of k between 0.1 and 0.15 year−1, and Lo between 60 and 70 m³/t, resulted in simulations with good capacity to predict CH4 for the chosen landfill, obtaining errors lower than 30%. Furthermore, these intervals identified a better representation of CH4 generation for values of k equal to 0.15 year−1 and Lo equal to 60 m³/t. This combination showed estimation errors smaller than 6% when compared to CH4 measured at C6 between 2004 to 2009, showing the importance of having experimental values of k and Lo to adjust the simulations and calibrate the used tools.
Os deslizamentos de terra constituem um dos principais fenômenos causadores de desastres naturais, provocando prejuízos materiais e vítimas fatais. Por isso, um sistema inteligente capaz de prever esses eventos seria útil para suporte ao poder público no processo de tomada de decisão e no gerenciamento situacional em cidades inteligentes. Este trabalho realizou a integração de múltiplos sistemas necessários para enfrentar o problema e utilizou técnicas de mineração de dados e aprendizado de máquina na construção de uma base de dados integrada e na predição de deslizamentos de terra induzidos por chuvas. Os experimentos demonstraram resultados promissores, sendo corretamente preditos cerca 90% dos registros de deslizamentos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.