In tropical America, principally in Northeastern Brazil, the leaf extract of Anacardium occidentale is traditionally used for treatment of different diseases. However, chemical and biological properties and activities of Anacardium occidentale are poorly investigated and known. Here, we evaluated the antioxidant and anti-inflammatory activities “in vitro” of leaf extract from Anacardium occidentale. Our results show that leaf extract exhibits antioxidant activity when used to treat RAW 264.7 macrophage cells. Antioxidant effects were observed by decrease in oxidative damage in macrophage cells treated with 0.5 µg/mL and 5 µg/mL of leaf extract. Moreover, leaf extract reversed oxidative damage and inflammatory parameters induced in LPS-stimulated RAW 264.7 macrophage cells. Leaf extract at 0.5 µg/mL and 5 µg/mL was able to inhibit release of TNF-α and IL-1β in LPS-stimulated cells. Taken together, our results indicate antioxidant and anti-inflammatory effects of leaf extract from Anacardium occidentale and reveal the positive effects that intake of these products can mediate in biological system.
<b><i>Introduction:</i></b> Obesity has emerged as one of the main public health problems. This condition triggers a series of hormonal and metabolic changes related to a low-grade chronic inflammatory condition. The trypsin inhibitor purified from tamarind (TTIp) seeds is a promising anti-inflammatory molecule, but its safety needs to be evaluated. This study aimed to evaluate TTIp bioactive dose effects on organs involved in its metabolism (liver and pancreas) and affected tissues (small intestine and perirenal adipose tissue) in an obesity model. <b><i>Methods:</i></b> Three groups of adult male Wistar rats were used (n = 5). Two of these groups had diet-induced obesity, and a third group was eutrophic. TTIp was administered by gavage in one of the obese groups for 10 days, while the remaining groups received a vehicle. The chromatographic profile and the inhibition assay corroded the purification of the inhibitor. Physical and behavioral changes, liver enzymes, and stereological and histopathological analyses of tissues were evaluated. <b><i>Results:</i></b> TTIp did not cause visible signs of toxicity, nor caused changes in liver enzymes, the liver, and pancreatic tissues. TTIp did not cause changes in the intestinal mucosa, showing improvement in the villi’s histopathological characteristics compared to the group of animals with obesity without treatment with TTIp (<i>p</i> = 0.004). The analysis of perirenal adipose tissue showed that the average sectional area of animals with obesity that received TTIp did not differ from the control. There was a difference between the high glycemic load diet group and the group treated with the inhibitor (351.8 ± 55.5) (<i>p</i> = 0.016). In addition, the group that received TTIp had no inflammatory infiltrates. <b><i>Conclusion:</i></b> Based on histological and stereological analysis, the use of TTIp is potentially safe and anti-inflammatory in the evaluated obesity model and can be investigated as a possible adjuvant in obesity therapy.
In South America, particularly in the Northeastern regions of Brazil, Turnera subulata leaf extract is used as an alternative traditional medicine approach for several types of chronic diseases, such as diabetes, hypertension, chronic pain, and general inflammation. Despite its widespread use, little is known about the medicinal properties of the plants of this genus. In this study, we evaluate the antioxidant and anti-inflammatory of T. subulata leaf extract in an in vitro model of inflammation, using lipopolysaccharide-stimulated RAW-264.7 macrophage cell line. We observed that cotreatment with T. subulata leaf extract was able to reduce the oxidative stress in cells due to inflammatory response. More importantly, we observed that the leaf extract was able to directly modulate inflammatory response by altering activity of members of the mitogen-activated protein kinase pathways. Our results demonstrate for the first time that T. subulata have antioxidant and anti-inflammatory properties, which warrant further investigation of the medicinal potential of this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.