Background and Aims The existence of sclerophyllous plants has been considered an adaptive strategy against different environmental stresses. As it literally means "hard-leaved", it is essential to quantify the leaf mechanical properties to understand sclerophylly. However, the relative importance of each leaf trait on mechanical properties is not yet well established. Methods Genus Quercus is an excellent system to shed light on this since it minimizes phylogenetic variation while having a wide variation in sclerophylly. Thus, leaf anatomical traits and cell wall composition were measured, analyzing their relationship with LMA and leaf mechanical properties in a set of 25 oak species. Key results The upper epidermis outer wall had a strong and direct contribution to the leaf mechanical strength. Moreover, cellulose plays a critical role in increasing leaf strength and toughness. The PCA plot based on leaf trait values clearly separated Quercus species into two groups corresponding to evergreen and deciduous species. Conclusions Sclerophyllous Quercus species are tougher and stronger due to their thicker epidermis outer wall and/or higher cellulose concentration. Furthermore, section Ilex species share common traits regardless of they occupy quite different climates. In addition, evergreen species living in Mediterranean-type climates share common leaf traits irrespective of their different phylogenetic origin.
There is a growing interest in multifunctional composites and in the identification of novel applications for recycled materials. In this work, the design and fabrication of multiple particle-loaded polymer composites, including micronized rubber from end-of-life tires, is studied. The integration of these composites as part of ultrasonic transducers can further expand the functionality of the piezoelectric material in the transducer in terms of sensitivity, bandwidth, ringing and axial resolution and help to facilitate the fabrication and use of phantoms for echography. The adopted approach is a multiphase and multiscale one, based on a polymeric matrix with a load of recycled rubber and tungsten powders. A fabrication procedure, compatible with transducer manufacturing, is proposed and successfully used. We also proposed a modelling approach to calculate the complex elastic modulus, the ultrasonic damping and to evaluate the relative influence of particle scattering. It is concluded that it is possible to obtain materials with acoustic impedance in the range 2.35–15.6 MRayl, ultrasound velocity in the range 790–2570 m/s, attenuation at 3 MHz, from 0.96 up to 27 dB/mm with a variation of the attenuation with the frequency following a power law with exponent in the range 1.2–3.2. These ranges of values permit us to obtain most of the material properties demanded in ultrasonic engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.