The great quantity of music content available online has increased interest in music recommender systems. However, some important problems must be addressed in order to give reliable recommendations. Many approaches have been proposed to deal with cold-start and first-rater drawbacks; however, the problem of generating recommendations for gray-sheep users has been less studied. Most of the methods that address this problem are content-based, hence they require item information that is not always available. Another significant drawback is the difficulty in obtaining explicit feedback from users, necessary for inducing recommendation models, which causes the well-known sparsity problem. In this work, a recommendation method based on playing coefficients is proposed for addressing the above-mentioned shortcomings of recommender systems when little information is available. The results prove that this proposal outperforms other collaborative filtering methods, including those that make use of user attributes.
Recent research in the field of recommender systems focuses on the incorporation of social information into collaborative filtering methods to improve the reliability of recommendations. Social networks enclose valuable data regarding user behavior and connections that can be exploited in this area to infer knowledge about user preferences and social influence. The fact that streaming music platforms have some social functionalities also allows this type of information to be used for music recommendation. In this work, we take advantage of the friendship structure to address a type of recommendation bias derived from the way collaborative filtering methods compute the neighborhood. These methods restrict the rating predictions for a user to the items that have been rated by their nearest neighbors while leaving out other items that might be of his/her interest. This problem is different from the popularity bias caused by the power-law distribution of the item rating frequency (long-tail), well-known in the music domain, although both shortcomings can be related. Our proposal is based on extending and diversifying the neighborhood by capturing trust and homophily effects between users through social structure metrics. The results show an increase in potentially recommendable items while reducing recommendation error rates.
In recent years, streaming music platforms have become very popular mainly due to the huge number of songs these systems make available to users. This enormous availability means that recommendation mechanisms that help users to select the music they like need to be incorporated. However, developing reliable recommender systems in the music field involves dealing with many problems, some of which are generic and widely studied in the literature while others are specific to this application domain and are therefore less well-known. This work is focused on two important issues that have not received much attention: managing gray-sheep users and obtaining implicit ratings. The first one is usually addressed by resorting to content information that is often difficult to obtain. The other drawback is related to the sparsity problem that arises when there are obstacles to gather explicit ratings. In this work, the referred shortcomings are addressed by means of a recommendation approach based on the users’ streaming sessions. The method is aimed at managing the well-known power-law probability distribution representing the listening behavior of users. This proposal improves the recommendation reliability of collaborative filtering methods while reducing the complexity of the procedures used so far to deal with the gray-sheep problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.