Marine resources are today a renewable source of various compounds, such as polysaccharides, that are used in the pharmaceutical, medical, cosmetic, and food fields. In recent years, considerable attention has been focused on carrageenan-based biomaterials due to their multifunctional qualities, including biodegradability, biocompatibility, and non-toxicity, in addition to bioactive attributes, such as their antiviral, antibacterial, antihyperlipidemic, anticoagulant, antioxidant, antitumor, and immunomodulating properties. They have been applied in pharmaceutical formulations as both their bioactive and physicochemical properties make them suitable biomaterials for drug delivery, and recently for the development of tissue engineering. This article provides a review of recent research on the various types of carrageenan-based biomedical and pharmaceutical applications.
Vaginal microbicides have the potential to give women at high risk of contracting HIV the option of self-protection by preventing the sexual transmission of the virus. In this paper, mucoadhesive vaginal tablets based on chitosan, alone and in combination with pectin and locust bean gum, were developed for the sustained release of tenofovir (an antiretroviral drug). The formulations were placed in simulant vaginal fluid (SVF) to swell, and Hg porosity and SEM microscopy were used for the microstructural characterization of the swelling witnesses. The results show that the association of pectin and chitosan generated polyelectrolyte complexes and produced a robust system able to maintain its structure during the swelling process, when small pores are formed. Drug release and bovine vaginal mucoadhesion studies were performed in SVF showing that tenofovir-controlled dissolution profiles and adhesion to the mucosa were conditioned by the swelling processes of the polymer/s in each formulation. Tablets based on chitosan/pectin have the most homogeneous tenofovir dissolution profiles and last up to 96 h, remaining attached to the vaginal mucosa for the same period. These formulations can therefore be considered a good option for the self-protection of women from the sexual transmission of HIV.
The main challenges facing efforts to prevent the transmission of human immunodeficiency virus (HIV) are the lack of access to sexual education services and sexual violence against young women and girls. Vaginal formulations for the prevention of sexually transmitted infections are currently gaining importance in drug development. Vaginal mucoadhesive tablets can be developed by including natural polymers that have good binding capacity with mucosal tissues, such as chitosan or guar gum, semisynthetic polymers such as hydroxypropylmethyl cellulose, or synthetic polymers such as Eudragit® RS. This paper assesses the potential of chitosan for the development of sustained-release vaginal tablets of Tenofovir and compares it with different polymers. The parameters assessed were the permanence time of the bioadhesion—determined ex vivo using bovine vaginal mucosa as substrate—the drug release profiles from the formulation to the medium (simulated vaginal fluid), and swelling profiles in the same medium. Chitosan can be said to allow the manufacture of tablets that remain adhered to the vaginal mucosa and release the drug in a sustained way, with low toxicity and moderate swelling that ensures the comfort of the patient and may be useful for the prevention of sexual transmission of HIV.
Vaginal formulations for the prevention of sexually transmitted infections are currently gaining importance in drug development. Polysaccharides, such as chitosan and carrageenan, which have good binding capacity with mucosal tissues, are now included in vaginal delivery systems. Marine polymer-based vaginal mucoadhesive solid formulations have been developed for the controlled release of acyclovir, which may prevent the sexual transmission of the herpes simplex virus. Drug release studies were carried out in two media: simulated vaginal fluid and simulated vaginal fluid/simulated seminal fluid mixture. The bioadhesive capacity and permanence time of the bioadhesion, the prepared compacts, and compacted granules were determined ex vivo using bovine vaginal mucosa as substrate. Swelling processes were quantified to confirm the release data. Biocompatibility was evaluated through in vitro cellular toxicity assays, and the results showed that acyclovir and the rest of the materials had no cytotoxicity at the maximum concentration tested. The mixture of hydroxyl-propyl-methyl-cellulose with chitosan- or kappa-carrageenan-originated mucoadhesive systems that presented a complete and sustained release of acyclovir for a period of 8–9 days in both media. Swelling data revealed the formation of optimal mixed chitosan/hydroxyl-propyl-methyl-cellulose gels which could be appropriated for the prevention of sexual transmission of HSV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.