BackgroundAdministrative databases are widely available and have been extensively used to provide estimates of chronic disease prevalence for the purpose of surveillance of both geographical and temporal trends. There are, however, other sources of data available, such as medical records from primary care and national surveys. In this paper we compare disease prevalence estimates obtained from these three different data sources.MethodsData from general practitioners (GP) and administrative transactions for health services were collected from five Italian regions (Veneto, Emilia Romagna, Tuscany, Marche and Sicily) belonging to all the three macroareas of the country (North, Center, South). Crude prevalence estimates were calculated by data source and region for diabetes, ischaemic heart disease, heart failure and chronic obstructive pulmonary disease (COPD). For diabetes and COPD, prevalence estimates were also obtained from a national health survey. When necessary, estimates were adjusted for completeness of data ascertainment.ResultsCrude prevalence estimates of diabetes in administrative databases (range: from 4.8% to 7.1%) were lower than corresponding GP (6.2%-8.5%) and survey-based estimates (5.1%-7.5%). Geographical trends were similar in the three sources and estimates based on treatment were the same, while estimates adjusted for completeness of ascertainment (6.1%-8.8%) were slightly higher. For ischaemic heart disease administrative and GP data sources were fairly consistent, with prevalence ranging from 3.7% to 4.7% and from 3.3% to 4.9%, respectively. In the case of heart failure administrative estimates were consistently higher than GPs’ estimates in all five regions, the highest difference being 1.4% vs 1.1%. For COPD the estimates from administrative data, ranging from 3.1% to 5.2%, fell into the confidence interval of the Survey estimates in four regions, but failed to detect the higher prevalence in the most Southern region (4.0% in administrative data vs 6.8% in survey data). The prevalence estimates for COPD from GP data were consistently higher than the corresponding estimates from the other two sources.ConclusionThis study supports the use of data from Italian administrative databases to estimate geographic differences in population prevalence of ischaemic heart disease, treated diabetes, diabetes mellitus and heart failure. The algorithm for COPD used in this study requires further refinement.
Introduction:We see increased use of existing observational data in order to achieve fast and transparent production of empirical evidence in health care research. Multiple databases are often used to increase power, to assess rare exposures or outcomes, or to study diverse populations. For privacy and sociological reasons, original data on individual subjects can’t be shared, requiring a distributed network approach where data processing is performed prior to data sharing.Case Descriptions and Variation Among Sites:We created a conceptual framework distinguishing three steps in local data processing: (1) data reorganization into a data structure common across the network; (2) derivation of study variables not present in original data; and (3) application of study design to transform longitudinal data into aggregated data sets for statistical analysis. We applied this framework to four case studies to identify similarities and differences in the United States and Europe: Exploring and Understanding Adverse Drug Reactions by Integrative Mining of Clinical Records and Biomedical Knowledge (EU-ADR), Observational Medical Outcomes Partnership (OMOP), the Food and Drug Administration’s (FDA’s) Mini-Sentinel, and the Italian network—the Integration of Content Management Information on the Territory of Patients with Complex Diseases or with Chronic Conditions (MATRICE).Findings:National networks (OMOP, Mini-Sentinel, MATRICE) all adopted shared procedures for local data reorganization. The multinational EU-ADR network needed locally defined procedures to reorganize its heterogeneous data into a common structure. Derivation of new data elements was centrally defined in all networks but the procedure was not shared in EU-ADR. Application of study design was a common and shared procedure in all the case studies. Computer procedures were embodied in different programming languages, including SAS, R, SQL, Java, and C++.Conclusion:Using our conceptual framework we found several areas that would benefit from research to identify optimal standards for production of empirical knowledge from existing databases.an opportunity to advance evidence-based care management. In addition, formalized CM outcomes assessment methodologies will enable us to compare CM effectiveness across health delivery settings.
ObjectivesThe Italian project MATRICE aimed to assess how well cases of type 2 diabetes (T2DM), hypertension, ischaemic heart disease (IHD) and heart failure (HF) and their levels of severity can be automatically extracted from the Health Search/CSD Longitudinal Patient Database (HSD). From the medical records of the general practitioners (GP) who volunteered to participate, cases were extracted by algorithms based on diagnosis codes, keywords, drug prescriptions and results of diagnostic tests. A random sample of identified cases was validated by interviewing their GPs.SettingHSD is a database of primary care medical records. A panel of 12 GPs participated in this validation study.Participants300 patients were sampled for each disease, except for HF, where 243 patients were assessed.Outcome measuresThe positive predictive value (PPV) was assessed for the presence/absence of each condition against the GP's response to the questionnaire, and Cohen's κ was calculated for agreement on the severity level.ResultsThe PPV was 100% (99% to 100%) for T2DM and hypertension, 98% (96% to 100%) for IHD and 55% (49% to 61%) for HF. Cohen's kappa for agreement on the severity level was 0.70 for T2DM and 0.69 for hypertension and IHD.ConclusionsThis study shows that individuals with T2DM, hypertension or IHD can be validly identified in HSD by automated identification algorithms. Automatic queries for levels of severity of the same diseases compare well with the corresponding clinical definitions, but some misclassification occurs. For HF, further research is needed to refine the current algorithm.
BackgroundFor chronic conditions, disparities can take effect cumulatively at various times as the disease progresses, even when care is provided. The aim of this study was to quantify the prevalence of diabetes, congestive heart failure (CHF) and coronary heart disease (CHD) in adults by citizenship, and to compare the performance of primary care services in managing these chronic conditions, again by citizenship.MethodsThis is a population-based retrospective cohort study on 1,948,622 people aged 16 years or more residing in Italy. A multilevel regression model was applied to analyze adherence to care processes using explanatory variables at both patient and district level.ResultsThe age-adjusted prevalence of diabetes was found higher among immigrants from high migratory pressure countries (HMPC) than among Italians, while the age-adjusted prevalence of CHD and CHF was higher for Italians than for HMPC immigrants or those from highly-developed countries (HDC). Our results indicate lower levels in all quality management indicators for citizens from HMPC than for Italians, for all the chronic conditions considered. Patients from HDC did not differ from Italian in their adherence to disease management schemes.ConclusionThis study revealed a different prevalence of chronic diseases by citizenship, implying a different burden of primary care by citizenship. Our findings show that more effort is needed to guarantee migrant-sensitive primary health care.
Interest in chronic conditions reflects their role as the first cause of death and disability in developed countries; improving the management of these conditions is a priority for health care services. The aim of this study was to establish which sociodemographic factors influence adherence to standards of care for chronic heart failure (CHF). A generalized multilevel structural equation model was developed and applied to a sample of patients with CHF obtained from administrative data flows in six Italian regions to ascertain any associations between adherence to standards of care for CHF and sociodemographic variables. Indicators of compliance were adherence to beta-blocker therapy (BB-A) and Angiotensin Convertin Enzime inhibitor/Angiotensin Receptor Blocker therapy (ACE-A), and creatinine and electrolyte testing (CNK-T). All indicators were computed over a one-year follow-up. Among a cohort of 24,997 patients, the BB-A rate was 40.4%, the ACE-A rate 61.1%, and the CNK-T rate 57.0%. Factors found associated with adherence were gender, age, and citizenship. Our study shows an inadequate adherence to standards of care for CHF, particularly associated with certain sociodemographic characteristics. This suggests the need to improve the role of primary care in managing this chronic condition. The measures considered only apply to patients with a reduced Left Ventricular Ejection Fraction, hence a limitation of this analysis is the lack of information on left ventricular ejection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.