During evolution prokaryotes have developed different envelope structures exterior to the cell wall proper. Among these surface components are regularly arranged S-layers and capsules. The structural characterization and the detailed chemical analysis of these surface molecules is a prerequisite to understand their biosynthesis and functional role(s) at the molecular level. Of particular interest are the glycosylated S-layer proteins which belong to the first prokaryotic glycoproteins ever described. Their characterization was performed on strains belonging to the thermophilic Bacillaceae and included structural studies and experiments to learn about the pathways for the glycan biosynthesis of S-layer glycoproteins. As an example for non-glycosylated S-layer proteins those of Lactobacillus helveticus strains are described in detail. Recently, a novel type of bacterial glycoconjugate was observed in the cell envelope of the extremely halophilic archaeon Natronococcus occultus which consists of a glycosylated polyglutamyl polymer. Beside the conventional biochemical techniques for the analysis new sophisticated instrumental methods such as X-ray photoelectron spectroscopy and matrix-assisted laser desorption ionization or electrospray ionization mass spectrometry have been introduced for the analysis of the protein and glycan portions of these cell surface macromolecules.
SummaryRapid and efficient procedures for the detection of sequence polymorphisms are essential for chromosomal walking and mutation detection analyses. While DNA chip technology and denaturing high-performance liquid chromatography (DHPLC) are the methods of choice for large scale facilities, small laboratories are dependent on simple ready-to-use techniques. We show that heteroduplex analysis on high resolution gel matrices efficiently detects sequence polymorphism differing as little as a single base pair (e.g. single-nucleotide polymorphism, SNP) with standard laboratory equipment. Furthermore, the matrices also discerned differences between homoduplexes, a prerequisite for co-dominant markers. The markers thus generated are referred to as duplex analysis markers. We designed PCR primers for 36 Arabidopsis thaliana loci ranging in length from 230 bp to 1000 bp. Among three ecotypes, more than half (n⍧ 19) of the loci examined were polymorphic; five of which contained three different alleles. This simple, high resolution technique can be used to rapidly convert sequence tagged sites into co-dominant PCR-based molecular markers for fine-scale mapping studies and chromosomal walking strategies as well as for the detection of mutations in particular genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.