Rotavirus is the most common cause of acute gastroenteritis among infants and young children throughout the world, but rotavirus cases in developing countries account for nearly all of the ∼600,000 annual deaths. We studied the epidemiology of rotavirus in 22 rural communities in northern coastal Ecuador over a five-year period. From 250 rotavirus positive stool specimens, the percentage that could not be RT-PCR genotyped for VP4 and VP7 was 77% and 63%, respectively. The possibility of sample degradation was considered but discounted after an experimental examination of rotavirus stability and EM visualization of rotavirus-like particles in several untypeable samples. Finally, alternate primers were used to amplify Ecu534, a sample that was untypeable using most published VP4 and VP7 primers. Characterization of the VP7, VP4, and VP6 full gene segments revealed novel genotypes and nucleotide mismatches with most published primer sequences. When considered with other findings, our results suggest that primer mismatch may be a widespread cause of genotyping failure, and might be particularly problematic in countries with greater rotavirus diversity. The novel sequences described in this study have been given GenBank accession numbers EU805775 (VP7), EU805773 (VP4), EU805774 (VP6) and the RCWG has assigned them novel genotypes G20P[28]I13, respectively.
The public health impact of the emergence of new norovirus (NoV) strains is uncertain. A biennial pattern of alternating quiescent and epidemic levels of NoV outbreak activity associated with the emergence of new GII.4 variants was observed in Alberta, Canada, between July 2000 and June 2008. In this study, NoV genogroup I (GI) and GII strains isolated from 710 outbreak specimens in Alberta between July 2008 and January 2013 were characterized to update historical data. The seasonality and annual variation in NoV outbreak burden were analyzed over a 10-year period (July 2002 to June 2012). We found that GII.4-2006b had persisted as the predominant variant over three observation periods (July 2006 to June 2009) during which the biennial NoV outbreak pattern continued. The emergence of GII.4-2010 (winter 2009) was not associated with increased outbreak activity, and outbreak activity between July 2009 and June 2012 when GII.4-2010 predominated (67.5 to 97.7%) did not follow a biennial pattern. GII.4-2012 first emerged in Alberta in September 2011 and became predominant in observation period July 2012 to June 2013. NoV GI, relatively rare in past years, had a higher activity level (37.3%) as represented by GI.6 and GI.7 in the winter of 2012 to 2013. A higher proportion of GI outbreaks occurred in non-health care facility settings compared to GII. Our study suggests that factors other than new variants emergence contribute to the levels of NoV outbreak activity in Alberta.
Background The emergence of norovirus genotype GII.4 variants has been associated with gastroenteritis pandemics worldwide, prompting molecular surveillance for early detection of novel strains. In this study, we aimed to analyze the outbreak activity of norovirus and characterize the norovirus strains circulating in Alberta between July 2012 and February 2018. Methods Stool samples from gastroenteritis outbreaks in Alberta were tested for norovirus at the Provincial Laboratory for Public Health using a multiplex real time-RT PCR assay. The ORF1 and ORF2-genotypes of norovirus positive samples were assigned based on phylogenetic analyses of partial polymerase and capsid sequences, respectively. Results A total of 530 norovirus outbreaks were identified. During July 2012 and June 2017 there was a gradual decrease in the annual number of GII.4 outbreaks, however, outbreak numbers increased from June 2017–February 2018. Four novel strains emerged: GII.17 Kawasaki in July 2014–June 2015, GII.P16/GII.4 Sydney in July 2015–June 2016, GII.P16/GII.2 and GII.P4 New Orleans/GII.4 Sydney in July 2016–June 2017. GII.Pe/GII.4 Sydney was the single predominant strain responsible for the majority (over 50%) of all norovirus outbreaks up to June 2015. Between June 2017 and February 2018, GII.P16/GII.4 Sydney was the leading strain causing 63% of all norovirus outbreaks. Conclusions GII.4 stands as the predominant capsid genotype causing a large majority of the norovirus outbreaks in early 2018. An increase in genotype diversity was observed in the last years, characterized by a high circulation of non-GII.4 strains and GII.4 recombinants. Electronic supplementary material The online version of this article (10.1186/s12879-019-3792-y) contains supplementary material, which is available to authorized users.
BackgroundImmunocompromised individuals with chronic norovirus (NoV) infection and elderly patients are hypothesized to be reservoirs where NoV might accumulate mutations and evolve into pandemic strains. Next generation sequencing (NGS) methods can monitor the intra-host diversity of NoV and its evolution but low abundance of viral RNA results in sub-optimal efficiency. In this study, we: 1) established a next generation sequencing-based method for NoV using bacterial rRNA depletion as a viral RNA enrichment strategy, and 2) measured the intra-host genetic diversity of NoV in specimens of patients with acute NoV infection (n = 4) and in longitudinal specimens of an immunocompromised patient with chronic NoV infection (n = 2).ResultsA single Illumina MiSeq dataset resulted in near full-length genome sequences for 5 out of 6 multiplexed samples. Experimental depletion of bacterial rRNA in stool RNA provided up to 1.9 % of NoV reads. The intra-host viral population in patients with acute NoV infection was homogenous and no single nucleotide variants (SNVs) were detected. In contrast, the NoV population from the immunocompromised patient was highly diverse and accumulated SNVs over time (51 SNVs in the first sample and 122 SNVs in the second sample collected 4 months later). The percentages of SNVs causing non-synonymous mutations were 27.5 % and 20.5 % for the first and second samples, respectively. The majority of non-synonymous mutations occurred, in increasing order of frequency, in p22, the major capsid (VP1) and minor capsid (VP2) genes.ConclusionsThe results provide data useful for the selection and improvement of NoV RNA enrichment strategies for NGS. Whole genome analysis using next generation sequencing confirmed that the within-host population of NoV in an immunocompromised individual with chronic NoV infection was more diverse compared to that in individuals with acute infection. We also observed an accumulation of non-synonymous mutations at the minor capsid gene that has not been reported in previous studies and might have a role in NoV adaptation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2831-y) contains supplementary material, which is available to authorized users.
Wastewater monitoring of SARS-CoV-2 enables early detection and monitoring of the COVID-19 disease burden in communities and can track specific variants of concern. We determined proportions of the Omicron and Delta variants across 30 municipalities covering >75% of the province of Alberta (population 4.5 million), Canada, during November 2021–January 2022. Larger cities Calgary and Edmonton exhibited more rapid emergence of Omicron than did smaller and more remote municipalities. Notable exceptions were Banff, a small international resort town, and Fort McMurray, a medium-sized northern community that has many workers who fly in and out regularly. The integrated wastewater signal revealed that the Omicron variant represented close to 100% of SARS-CoV-2 burden by late December, before the peak in newly diagnosed clinical cases throughout Alberta in mid-January. These findings demonstrate that wastewater monitoring offers early and reliable population-level results for establishing the extent and spread of SARS-CoV-2 variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.