[1] The detection of a trend in a time series and the evaluation of its magnitude and statistical significance is an important task in geophysical research. This importance is amplified in climate change contexts, since trends are often used to characterize long-term climate variability and to quantify the magnitude and the statistical significance of changes in climate time series, both at global and local scales. Recent studies have demonstrated that the stochastic behavior of a time series can change the statistical significance of a trend, especially if the time series exhibits long-range dependence. The present study examines the trends in time series of daily average temperature recorded in 26 stations in the Tuscany region (Italy). In this study a new framework for trend detection is proposed. First two parametric statistical tests, the Phillips-Perron test and the Kwiatkowski-Phillips-Schmidt-Shin test, are applied in order to test for trend stationary and difference stationary behavior in the temperature time series. Then long-range dependence is assessed using different approaches, including wavelet analysis, heuristic methods and by fitting fractionally integrated autoregressive moving average models. The trend detection results are further compared with the results obtained using nonparametric trend detection methods: Mann-Kendall, Cox-Stuart and Spearman's r tests. This study confirms an increase in uncertainty when pronounced stochastic behaviors are present in the data. Nevertheless, for approximately one third of the analyzed records, the stochastic behavior itself cannot explain the long-term features of the time series, and a deterministic positive trend is the most likely explanation.
Information storage, reflecting the capability of a dynamical system to keep predictable information during its evolution over time, is a key element of intrinsic distributed computation, useful for the description of the dynamical complexity of several physical and biological processes. Here we introduce a parametric framework which allows to compute information storage across multiple time scales in stochastic processes displaying both short-term dynamics and long-range correlations (LRC). The framework exploits the theory of state space models to provide the multiscale representation of linear fractionally integrated autoregressive (ARFI) processes, from which information storage is computed at any given time scale relating the process variance to the prediction error variance. This enables the theoretical assessment and a computationally reliable quantification of a complexity measure which incorporates the effects of LRC together with that of short-term dynamics. The proposed measure is first assessed in simulated ARFI processes reproducing different types of autoregressive (AR) dynamics and different degrees of LRC, studying both the theoretical values and the finite sample performance. We find that LRC alter substantially the complexity of ARFI processes even at short time scales, and that reliable estimation of complexity can be achieved at longer time scales only when LRC are properly modeled. Then, we assess multiscale information storage in physiological time series measured in humans during resting state and postural stress, revealing unprecedented responses to stress of the complexity of heart period and systolic arterial pressure variability, which are related to the different role played by LRC in the two conditions.
Assessing the dynamical complexity of biological time series represents an important topic with potential applications ranging from the characterization of physiological states and pathological conditions to the calculation of diagnostic parameters. In particular, cardiovascular time series exhibit a variability produced by different physiological control mechanisms coupled with each other, which take into account several variables and operate across multiple time scales that result in the coexistence of short term dynamics and long-range correlations. The most widely employed technique to evaluate the dynamical complexity of a time series at different time scales, the so-called multiscale entropy (MSE), has been proven to be unsuitable in the presence of short multivariate time series to be analyzed at long time scales. This work aims at overcoming these issues via the introduction of a new method for the assessment of the multiscale complexity of multivariate time series. The method first exploits vector autoregressive fractionally integrated (VARFI) models to yield a linear parametric representation of vector stochastic processes characterized by short- and long-range correlations. Then, it provides an analytical formulation, within the theory of state-space models, of how the VARFI parameters change when the processes are observed across multiple time scales, which is finally exploited to derive MSE measures relevant to the overall multivariate process or to one constituent scalar process. The proposed approach is applied on cardiovascular and respiratory time series to assess the complexity of the heart period, systolic arterial pressure and respiration variability measured in a group of healthy subjects during conditions of postural and mental stress. Our results document that the proposed methodology can detect physiologically meaningful multiscale patterns of complexity documented previously, but can also capture significant variations in complexity which cannot be observed using standard methods that do not take into account long-range correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.