Selenium-binding proteins (SBPs) represent a ubiquitous protein family implicated in various environmental stress responses, although the exact molecular and physiological role of the SBP family remains elusive. In this work, we report the identification and characterization of CrSBD1, an SBP homologue from the model microalgae Chlamydomonas reinhardtii. Growth analysis of the C. reinhardtii sbd1 mutant strain revealed that the absence of a functional CrSBD1 resulted in increased growth under mild oxidative stress conditions, although cell viability rapidly declined at higher H2O2 concentrations. Furthermore, a combined global transcriptomic and metabolomic analysis indicated that the sbd1 mutant exhibited a dramatic quenching of the molecular and biochemical responses upon H2O2-induced oxidative stress when compared to the wild type. Our results indicate that CrSBD1 represents a cell regulator, which is involved in the modulation of C. reinhardtii early responses to oxidative stress. We assert that CrSBD1 acts as a member of an extensive and conserved protein-protein interaction network including Fructose-bisphosphate aldolase 3 (CrFBA3), Cysteine endopeptidase 2 (CrCEP2), and Glutaredoxin 6 (CrGRX6) proteins, as indicated by yeast two-hybrid assays.
Although carotenoids generally possess antimicrobial and antioxidant properties, the in vivo synergistic action of carotenoid blends derived from plant-based by-products has not been thoroughly studied. Therefore, the carotenoid characterization and antimicrobial potential of Citrus reticulata extract as well as the impact of this carotenoid-rich extract (CCE) dietary supplementation on the performance, meat quality, and immune-oxidative status of broiler chickens were determined. One hundred and twenty one-day-old hatched chicks (Ross 308) were allocated to two dietary groups, with four replicate pens of 15 birds each. Birds were fed either a basal diet (CON) or the basal diet supplemented with 0.1% CCE (25 mg carotenoid extract included in 1 g of soluble starch) for 42 d. β-Cryptoxanthin, β -Carotene, Zeaxanthin, and Lutein were the prevailing carotenoid compounds in the Citrus reticulata extract. The CCE feed additive exerted inhibitory properties against both Gram-positive (Staphylococcus aureus) and negative (Klebsiella oxytoca, Escherichia coli, and Salmonella typhimurium) bacteria. Both the broiler performance and meat quality did not substantially differ, while the breast muscle malondialdehyde (MDA) concentration tended to decrease (p = 0.070) in the CCE-fed broilers. The inclusion of CCE decreased the alanine aminotransferase and MDA concentration, and the activity of glutathione peroxidase, while the activity of superoxide dismutase was increased in the blood. Catalase and NADPH oxidase 2 relative transcript levels were significantly downregulated in the livers of the CCE-fed broilers. Additionally, Interleukin 1β and tumor necrosis factor (TNF) relative transcript levels were downregulated in the livers of the CCE- fed broilers, while TNF and interferon γ (IFNG) tended to decrease in the spleens and bursa of Fabricius, respectively. The present study provided new insights regarding the beneficial properties of carotenoids contained in Citrus reticulata in broilers’ immune-oxidative status. These promising outcomes could be the basis for further research under field conditions.
Crocus sativus L. has various pharmacological properties, known for over 3600 years. These properties are attributed mainly to biologically active substances, which belong to the terpenoid group and include crocins, picrocrocin and safranal. The aim of the current work was to examine the effects of crocins (CRCs) and their methyl ester derivate dimethylcrocetin (DMCRT) on glioblastoma and rhabdomyosarcoma cell lines, in terms of cytotoxicity and gene expression, implicated in proapoptotic and cell survival pathways. Cell cytotoxicity was assessed with Alamar Blue fluorescence assay after treatment with saffron carotenoids for 24, 48 and 72 h and concentrations ranging from 22.85 to 0.18 mg/mL for CRCs and 11.43 to 0.09 mg/mL for DMCRT. In addition, BAX, BID, BCL2, MYCN, SOD1, and GSTM1 gene expression was studied by qRT-PCR analysis. Both compounds demonstrated cytotoxic effects against glioblastoma and rhabdomyosarcoma cell lines, in a dose- and time-dependent manner. They induced apoptosis, via BAX and BID upregulation, MYCN and BCL-2, SOD1, GSTM1 downregulation. The current research denotes the possible anticancer properties of saffron carotenoids, which are considered safe phytochemicals, already tested in clinical trials for their health promoting properties.
In the pursuit of sustainable sources for food, energy, and health products, microalgae have gained attention. In the present study, the lagoonal system of the Nestos River delta was selected as a sampling point in order to search for opportunistic and robust species. Two new strains of Tetraselmis are described with regards to their taxonomic features (as observed using light and transmission electron microscopy and molecular phylogenetics) and their biochemical properties (total lipid, total protein, and total carbohydrate content, photosynthetic pigments, and antioxidant capacity). The studied strains were identified as representatives of Tetraselmis verrucosa f. rubens. Furthermore, both strains exhibited an interesting biochemical profile coupled with high growth rates and promising antioxidant activity, without the use of enhancement and induction culture methods, warranting further investigation and showing potential for biotechnological use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.