Volcanic ash from Puyehue Cordon Caulle Volcanic Complex (Chile), emitted on June 4, 2011, and deposited in Villa La Angostura at ~40 km of the source, was collected and analyzed by Raman spectroscopy, optical and scanning electron microscopy (SEM-EDS), X-ray diffraction (XRD), surface area (BET), and chemical analysis (ICP-AES-MS technique). The mineralogical and physicochemical study revealed that the pyroclastic mixture contains iron oxides in the form of magnetite and hematite as well as pyroxene and plagioclase mineral species and amorphous pumiceous shards. Carbonaceous material was also identified. Physicochemical techniques allow us to select two representative samples (average composition and Fe-rich materials) which were used to analyze their performances in the adsorption process to remove arsenic from water. Additional iron activation by means of ferric salts was performed under original sample. Results showed that the low-cost feedstock exhibited a good adsorption capacity to remove the contaminant, depending on the iron content and the water pH.
Pitting corrosion is a damage mechanism quite serious and dangerous in both carbon steel boiler tubes for power plants which are vital to most industries and stainless steels for orthopedic human implants whose demand, due to the increase of life expectation and rate of traffic accidents, has sharply increased. Reliable methods to characterize this kind of damage are becoming increasingly necessary, when trying to evaluate the advance of damage and to establish the best procedures for component inspection in order to determine remaining lives and failure mitigation. A study about the uncertainties on the topographies of corrosion pits from 3D SEM images, obtained at low magnifications (where errors are greater) and different stage tilt angles were carried out using an in-house software previously developed. Additionally, measurements of pit depths on biomaterial surfaces, subjected to two different surface treatments on stainless steels, were carried out. The different depth distributions observed were in agreement with electrochemical measurements.
Pyroclastic material from the PCCVC eruption (Chile) was modified with iron (III) solutions leading to the formation of ferrihydrite surface deposits. The aim of the chemical treatment was to prepare an adsorbent to remove arsenic from water by using low-cost mineral wastes. Physicochemical characterization of original and modified materials was carried out by XRD, BET-N2 adsorption, SEM-EDS microscopy and ICP-AES chemical analysis. The modified ash revealed that the increase of bulk iron content was close to 5% (expressed as Fe2O3) whereas surface values were 20.6% Fe2O3. Surface properties showed an increase of BET specific surface with prevalence of mesopores and an increase of total pore volume attributed to presence of nanoscopic iron phase. Kinetic and equilibrium studies were directed to optimize the operative conditions related to the material adsorptive capacity for removing arsenate species. Hence, the adsorbent dose, contact time, pH, stirring and sedimentation were evaluated in batch process. The optimal adsorption dose was 40 g•L −1 and the solid-liquid contact time was stirring (1 h) and sedimentation (23 h), enough to ensure an adequate turbidity value valid for a pH range between 3.77 and 8.95. The analysis of the isotherm equilibrium by using the Langmuir linear method showed a R 2 = 0.995 value. The performance of the treatment to remove arsenic by using a cost-effective adsorbent prepared from volcanic material is a promising technology to apply in the environmental field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.