Densities of four binary systems composed of an alkane (heptane, octane, nonane, or decane) and thiophene were measured at temperatures from 293.15 to 313.15 K at atmospheric pressure (0.7 atm). Measurements were made covering the full range of compositions for all systems studied and for the pure compounds by using a vibrating-tube densimeter (VTD). Excess molar volumes have been obtained from these experimental results and were fitted to a Redlich-Kister type expansion. The excess molar volumes exhibit positive deviations from ideal behavior for all of the binary systems studied here.
In the present work, the preparation, characterisation, and efficiency of two different silica nanostructures as release vehicles of Cisplatin are reported. The 1-hexadeciltrimethyl-ammonium bromide templating agent was used to obtain mesoporous silica nanoparticles which were later loaded with Cisplatin. While sol-gel silica was very fast prepared using an excess of acetic acid during the hydrolysis-condensation reactions of tetraethylorthosilicate and at the same time the Cisplatin was added. Several physicochemical techniques including spectroscopies, electronic microscopy, X-ray diffraction, N 2 adsorption-desorption were used to characterise the silica nanostructures. An in vitro Cisplatin release test was carried out using artificial cerebrospinal fluid. Finally, the toxicity of all silica nanostructures was tested using the C6 cancer cell line. The spectroscopic results showed the suitable stabilisation of Cisplatin into the two different silica nanostructures. A large surface area was obtained for the mesoporous silica nanoparticles, while low areas were obtained in the silica nanoparticles. Cisplatin was released faster from mesoporous silica channels than from inside of aggregates nanoparticles silica. Cisplatin alone, as well as, cisplatin released from both silica nanostructures exerted a toxic effect on cancer cells. In contrast, both silica structures without the drug did not exert any toxic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.