Inactivating germline mutations in phosphodiesterase 11A (PDE11A) have been implicated in adrenal tumor susceptibility. PDE11A is highly expressed in endocrine steroidogenic tissues, especially the testis, and mice with inactivated Pde11a exhibit male infertility, a known testicular germ cell tumor (TGCT) risk factor. We sequenced the PDE11A gene-coding region in 95 patients with TGCT from 64 unrelated kindreds. We identified 8 nonsynonymous substitutions in 20 patients from 15 families: four (R52T, F258Y, G291R, and V820M) were newly recognized, three (R804H, R867G, and M878V) were functional variants previously implicated in adrenal tumor predisposition, and one (Y727C) was a known polymorphism. We compared the frequency of these variants in our patients to unrelated controls that had been screened and found negative for any endocrine diseases: only the two previously reported variants, R804H and R867G, known to be frequent in general population, were detected in these controls. The frequency of all PDE11A-gene variants (combined) was significantly higher among patients with TGCT (P = 0.0002), present in 19% of the families of our cohort. Most variants were detected in the general population, but functional studies showed that all these mutations reduced PDE activity, and that PDE11A protein expression was decreased (or absent) in TGCT samples from carriers. This is the first demonstration of the involvement of a PDE gene in TGCT, although the cyclic AMP signaling pathway has been investigated extensively in reproductive organ function and their diseases. In conclusion, we report that PDE11A-inactivating sequence variants may modify the risk of familial and bilateral TGCT. [Cancer Res 2009;69(13):5301-6]
Background: Well-differentiated thyroid cancer (WDTC) incidence in pediatrics is rising, most being papillary thyroid carcinoma (PTC). The objective of the study was to assess the prevalence of different mutations in pediatric WDTC and correlate the genotype with the clinical phenotype.Methods: This is a single-center retrospective study. Thyroid tissue blocks from 42 consecutive pediatric WDTC patients who underwent thyroidectomy between 2001 and 2013 were analyzed at Quest Diagnostics for BRAFV600E, RAS mutations (N,K,H), and RET/PTC and PAX8/PPARγ rearrangements, using validated molecular methods. Thyroid carcinomas included PTC, follicular thyroid carcinoma (FTC), and follicular variant of PTC (FVPTC).Results: Thirty-nine samples (29 females) were genotyped. The mean age at diagnosis was 14.7 years (range 7.9–18.4 years), and most were Hispanic (56.4%) or Caucasian (35.9%). The mean follow-up period was 2.9 years. Mutations were noted in 21/39 (53.8%), with both BRAFV600E (n = 9), and RET/PTC (n = 6) detected only in PTC. Mutations were detected in 2/5 FTC (PAX8/PPARγ and NRAS) and 3/6 FVPTC cases (PAX8/PPARγ). Of 28 PTC patients, 57.1% had mutations: 32.1% with BRAFV600E, 21.4% with RET/PTC, and 3.6% with NRAS. Of patients with BRAFV600E, 77.8% were Hispanic and 88.9% were >15 years, while all RET/PTC-positive patients were ≤15 years (p = 0.003). Tumor size, lymph node involvement, and distant metastasis at diagnosis (or soon after 131I ablation) did not vary significantly based on the mutation.Conclusions: BRAFV600E was the most common mutation, especially in older and Hispanic adolescents. A larger, ethnically diverse pediatric cohort followed long term will enable the genotypic variability, clinical presentation, and response to therapy to be better assessed.
The incidence of type 2 diabetes is increasing more rapidly in adolescents than in any other age group. We identified and compared metabolite signatures in obese children with type 2 diabetes (T2D), obese children without diabetes (OB), and healthy, age-and gendermatched normal weight controls (NW) by measuring 273 analytes in fasting plasma and 24hour urine samples from 90 subjects by targeted LC-MS/MS. Diabetic subjects were within 2 years of diagnosis in an attempt to capture early-stage disease prior to declining renal function. We found 22 urine metabolites that were uniquely associated with T2D when compared to OB and NW groups. The metabolites most significantly elevated in T2D youth included members of the betaine pathway, nucleic acid metabolism, and branched-chain amino acids (BCAAs) and their catabolites. Notably, the metabolite pattern in OB and T2D groups differed between urine and plasma, suggesting that urinary BCAAs and their intermediates behaved as a more specific biomarker for T2D, while plasma BCAAs associated with the obese, insulin resistant state independent of diabetes status. Correlative analysis of metabolites in the T2D signature indicated that betaine metabolites, BCAAs, and aromatic amino acids were associated with hyperglycemia, but BCAA acylglycine derivatives and nucleic acid metabolites were linked to insulin resistance. Of major interest, we found that urine levels of succinylaminoimidazole carboxamide riboside (SAICA-riboside) were increased in diabetic youth, identifying urine SAICA-riboside as a potential biomarker for T2D.
Background: Human phosphodiesterase (PDE) type 8B (PDE8B) is located at 5q14.1 and is known as the PDE with the highest affinity to cAMP. We recently described a family with bilateral micronodular adrenocortical disease that was apparently caused by an inactivating PDE8B mutation (H305P). As a result of a genome-wide study, a strong association between six polymorphic variants in the PDE8B promoter and serum levels of the thyroid-stimulating hormone (TSH) has been recently reported. Despite an extended analysis of the regions surrounding 5q14.1, no other potential genetic variants that could be responsible for the associated TSH levels were found. Methods: In this study, we genotyped by polymerase chain reaction the described six polymorphic variants in the PDE8B promoter in the family with micronodular adrenocortical disease and inactivating PDE8B mutation and analyzed their correlation with individual TSH values in the family members. Results: We observed complete segregation between the reported association and individual TSH values in the family we studied. Haplotype analysis showed that the haplotype associated with the high TSH levels is different from the one that segregated with H305P, suggesting that the mutation most probably has arisen on an allele independent of the high TSH-associated allele. Conclusions: The proposed mechanism by which PDE8B may influence TSH levels is through control of cAMP signaling. Our analysis revealed separate segregation of an inactivating PDE8B allele from the high-TSH-allele and showed low TSH levels in persons who carry an inactivating PDE8B allele. These data suggest that, indeed, PDE8B may be involved in regulation of TSH levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.