AimTo test the early effect of fructose-induced changes in fatty acid composition and oxidative stress markers in perivascular adipose tissue (PVAT) upon vascular contractility.MethodsAdult male Wistar rats were fed a commercial diet without (CD) or with 10% fructose (FRD) in the drinking water for 3 weeks. We measured plasma metabolic parameters, lipid composition and oxidative stress markers in aortic PVAT. Vascular contractility was measured in aortic rings sequentially, stimulated with serotonin (5-HT) and high K+-induced depolarization using intact and thereafter PVAT-deprived rings.ResultsComparable body weights were recorded in both groups. FRD rats had increased plasma triglyceride and fructosamine levels. Their PVAT had an increased saturated to mono- or poly-unsaturated fatty acid ratio, a significant decrease in total superoxide dismutase and glutathione peroxidase activities and in the total content of glutathione. Conversely, lipid peroxidation (TBARS), nitric oxide content, and gluthathione reductase activity were significantly higher, indicating an increase in oxidative stress. In aortic rings, removal of PVAT increased serotonin-induced contractions, but the effect was significantly lower in rings from FRD rats. This effect was no longer observed when the two contractions were performed in PVAT-deprived rings. PVAT did not affect the contractions triggered by high K+-induced depolarization either in CD or FRD rats.ConclusionsFRD induces multiple metabolic and endocrine systemic alterations which also alter PVAT and the vascular relaxant properties of this tissue. The changes in PVAT would affect its paracrine modulation of vascular function.
In the present study, we tested the effect of OS (oxidative stress) inhibition in rats fed on an FRD [fructose-rich diet; 10% (w/v) in drinking water] for 3 weeks. Normal adult male rats received a standard CD (commercial diet) or an FRD without or with an inhibitor of NADPH oxidase, APO (apocynin; 5 mM in drinking water; CD-APO and FRD-APO). We thereafter measured plasma OS and metabolic-endocrine markers, AAT (abdominal adipose tissue) mass and cell size, FA (fatty acid) composition (content and release), OS status, LEP (leptin) and IRS (insulin receptor substrate)-1/IRS-2 mRNAs, ROS (reactive oxygen species) production, NADPH oxidase activity and LEP release by isolated AAT adipocytes. FRD-fed rats had larger AAT mass without changes in body weight, and higher plasma levels of TAG (triacylglycerol), FAs, TBARS (thiobarbituric acid-reactive substance) and LEP. Although no significant changes in glucose and insulin plasma levels were observed in these animals, their HOMA-IR (homoeostasis model assessment of insulin resistance) values were significantly higher than those of CD. The AAT from FRD-fed rats had larger adipocytes, higher saturated FA content, higher NADPH oxidase activity, greater ROS production, a distorted FA content/release pattern, lower insulin sensitivity together with higher and lower mRNA content of LEP and IRS-1-/2 respectively, and released a larger amount of LEP. The development of all the clinical, OS, metabolic, endocrine and molecular changes induced by the FRD were significantly prevented by APO co-administration. The fact that APO treatment prevented both changes in NADPH oxidase activity and the development of all the FRD-induced AAT dysfunctions in normal rats strongly suggests that OS plays an important role in the FRD-induced MS (metabolic syndrome) phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.