Chimeric antigen receptor (CAR)–engineered T‐cell therapy is becoming one of the most promising approaches in the treatment of cancer. On June 28, 2018, the Committee for Advanced Therapies (CAT) and the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency adopted a positive opinion, recommending the granting of a marketing authorization for the medicinal product Kymriah for pediatric and young adult patients up to 25 years of age with B‐cell acute lymphoblastic leukemia (ALL) that is refractory, in relapse after transplant, or in second or later relapse and for adult patients with relapsed or refractory diffuse large B‐cell lymphoma (DLBCL) after two or more lines of systemic therapy. Kymriah became one of the first European Union–approved CAR T therapies. The active substance of Kymriah is tisagenlecleucel, an autologous, immunocellular cancer therapy that involves reprogramming the patient's own T cells to identify and eliminate CD19‐expressing cells. This is achieved by addition of a transgene encoding a CAR. The benefit of Kymriah was its ability to achieve remission with a significant duration in patients with ALL and an objective response with a significant duration in patients with DLBCL. The most common hematological toxicity was cytopenia in both patients with ALL and those with DLBCL. Nonhematological side effects in patients with ALL were cytokine release syndrome (CRS), infections, secondary hypogammaglobulinemia due to B‐cell aplasia, pyrexia, and decreased appetite. The most common nonhematological side effects in patients with DLBCL were CRS, infections, pyrexia, diarrhea, nausea, hypotension, and fatigue. Kymriah also received an orphan designation on April 29, 2014, following a positive recommendation by the Committee for Orphan Medicinal Products (COMP). Maintenance of the orphan designation was recommended at the time of marketing authorization as the COMP considered the product was of significant benefit for patients with both conditions.
Implications for Practice
Chimeric antigen receptor (CAR)–engineered T‐cell therapy is becoming the most promising approach in cancer treatment, involving reprogramming the patient's own T cells with a CAR‐encoding transgene to identify and eliminate cancer‐specific surface antigen–expressing cells. On June 28, 2018, Kymriah became one of the first EMA approved CAR T therapies. CAR T technology seems highly promising for diseases with single genetic/protein alterations; however, for more complex diseases there will be challenges to target clonal variability within the tumor type or clonal evolution during disease progression. Products with a lesser toxicity profile or more risk‐minimization tools are also anticipated.
To uncover signaling system differences between T cell stimuli and T cell subsets, phosphorylation status of 18 signaling proteins at six different time points following TCR triggering and CD28/CD2 costimulation was examined in human T cell subsets by phospho-epitope–specific flow cytometry of fluorescent cell barcoded samples, thereby providing a high-resolution signaling map. Compared with effector/memory T cells, naive T cells displayed stronger activation of proximal signaling molecules after TCR triggering alone. Conversely, distal phosphorylation events, like pErk and pS6-ribosomal protein, were stronger in effector/memory subsets. CD28 costimulation specifically induced signaling necessary for proper NF-κB activation, whereas CD2 signaled more strongly to S6-ribosomal protein. Analysis of resting regulatory T cells (rTregs; CD4+CD45RA+FOXP3+) and activated regulatory T cells (actTregs; CD4+CD45RA−FOXP3++) revealed that, although rTregs had low basal, but inducible, Erk activity, actTregs displayed high basal Erk phosphorylation and little or no Akt activation. Interestingly, the use of Mek inhibitors to block Erk activation inhibited activation-dependent FOXP3 upregulation in rTregs, their transition to actTregs, and the resulting increase in suppressive capacity. In summary, our systems approach unraveled distinct differences in signaling elicited by CD28 and CD2 costimulation and between rTregs and actTregs. Blocking rTreg transition to highly suppressive actTregs by Mek inhibitors might have future therapeutic applications.
To analyze prostaglandin E 2 (PGE 2 ) signaling in lymphoid cells, we introduce a multipronged strategy, combining temporal quantitative phosphoproteomics and phospho flow cytometry. We describe the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.