In this work, the influence of temperature on textural, morphological, and crystalline characterization of bio-adsorbents produced by hydrothermal carbonization (HTC) of corn stover was systematically investigated. HTC was conducted at 175, 200, 225, and 250 °C, 240 min, heating rate of 2.0 °C/min, and biomass-to-H2O proportion of 1:10, using a reactor of 18.927 L. The textural, morphological, crystalline, and elemental characterization of hydro-chars was analyzed by TG/DTG/DTA, SEM, EDX, XRD, BET, and elemental analysis. With increasing process temperature, the carbon content increased and that of oxygen and hydrogen diminished, as indicated by elemental analysis (C, N, H, and S). TG/DTG analysis showed that higher temperatures favor the thermal stability of hydro-chars. The hydro-char obtained at 250 °C presented the highest thermal stability. SEM images of hydro-chars obtained at 175 and 200 °C indicated a rigid and well-organized fiber structure, demonstrating that temperature had almost no effect on the biomass structure. On the other hand, SEM images of hydro-chars obtained at 225 and 250 °C indicated that hydro-char structure consists of agglomerated micro-spheres and heterogeneous structures with nonuniform geometry (fragmentation), indicating that cellulose and hemi-cellulose were decomposed. EDX analysis showed that carbon content of hydro-chars increases and that of oxygen diminish, as process temperature increases. The diffractograms (XRD) identified the occurrence of peaks of higher intensity of graphite (C) as the temperature increased, as well as a decrease of peaks intensity for crystalline cellulose, demonstrating that higher temperatures favor the formation of crystalline-phase graphite (C). The BET analysis showed 4.35 m2/g surface area, pore volume of 0.0186 cm3/g, and average pore width of 17.08 μm. The solid phase product (bio-adsorbent) obtained by hydrothermal processing of corn stover at 250 °C, 240 min, and biomass/H2O proportion of 1:10, was activated chemically with 2.0 M NaOH and 2.0 M HCl solutions to investigate the adsorption of CH3COOH. The influence of initial acetic acid concentrations (1.0, 2.0, 3.0, and 4.0 mg/mL) was investigated. The kinetics of adsorption were investigated at different times (30, 60, 120, 240, 480, and 960 s). The adsorption isotherms showed that chemically activated hydro-chars were able to recover acetic acid from aqueous solutions. In addition, activation of hydro-char with NaOH was more effective than that with HCl.
Neste trabalho investigou-se o processo de destilação fracionada da cinética reacional do bio-óleo obtido a partir do craqueamento térmico-catalítico da gordura residual em escala semi-piloto a 450ºC, 1,0 atm. e utilizando-se lama vermelha ativada (HCl 1.0 M) a 7,5% (peso) como catalisador. A destilação foi realizada em uma coluna Vigreux, em escala de laboratório, de acordo com a faixa de temperatura de ebulição dos combustíveis fósseis (gasolina, querosene e diesel verdes), tendo sido realizado 04 experimentos. As frações destiladas foram submetidas às análises de densidade, índice de acidez, viscosidade cinemática e índice de refração, bem como a análise composicional via GC-MS. O rendimento total médio da destilação foi de 75,05% (peso), obtendo-se frações destiladas na faixa da gasolina, querosene e diesel verdes, com valores de 13,94, 23,40 e 37,71% (peso), respectivamente. O experimento IV obteve os melhores resultados, com índices de acidez variando de 2,34 a 4,35 mgKOH/g.
Hydrothermal processing of biomass may be able to overcome a series of problems associated with the thermochemical conversion of lignocellulosic material into energy and fuels. Investigating the process parameters and an adequate process description is one of the first steps to being able to design and optimize a certain treatment concept. In the present article, we studied process evolution with respect to reaction time in order to evaluate structure changes and kinetics of corn stover decomposition in a hydrothermal reactor. The effect of the biomass-to-H2O ratio was also investigated. A pilot-scale reactor of 18.75 L was used to conduct hydrothermal processing runs at 250 °C at different reaction times (60, 120 and 240 min) and biomass-to-H2O ratios (1:10, 1:15 and 1:20). Solid phase products were characterized by thermogravimetry (TG), scanning electron microscopy (SEM), elemental composition (EDX), crystalline phases by X-ray diffraction (XRD) and surface area (BET). For the experiments with a constant reaction time, the yields of hydro-char, aqueous and gaseous phases varied between 31.08 and 35.82% (wt.), 54.59 and 60.83% (wt.) and 8.08 and 9.58% (wt.), respectively. The yields of hydro-char and gases tend to increase with higher biomass-to-H2O ratios, while aqueous phase yields are lower when using lower ratios. As expected, the yields of liquid and gases are higher when using higher reaction times, but there is a reduction in hydro-char yields. TG showed that 60 min was not enough to completely degrade the corn stover, while 120 and 240 min presented similar results, indicating an optimized time of reaction between 120 and 240 min. SEM images, elemental composition and XRD of hydro-char showed that higher biomass-to-H2O ratios increase the carbonization of corn stover. The surface area analysis of hydro-char obtained at 250 °C, 2.0 °C/min, a biomass-to-H2O ratio of 1:10 and 240 min showed a surface area of 4.35 m2/g, a pore volume of 18.6 mm3/g and an average pore width of 17.08 μm. The kinetic of corn stover degradation or bio-char formation was correlated with a pseudo-first-order exponential model, exhibiting a root-mean-square error (r2) of 1.000, demonstrating that degradation kinetics of corn stover with hot-compressed H2O, expressed as hydro-char formation, is well described by an exponential decay kinetics.
In this work, the effect of reaction time and biomass-to-H2O ratio on the structural evolution of hydro-char and kinetic of by hydrothermal processing of corn Stover with hot compressed H2O, have been systematically investigated. The experiments were carried out at 250 °C, heating rate of 2.0 °C/min, biomass-to-H2O ratio of 1:10, and reaction times of 60, 120, and 240 minutes, and at 250 °C, 240 minutes, heating rate of 2.0 °C/min, and biomass-to-H2O water ratio of 1:10, 1:15, and 1:20, using a pilot scale stirred tank reactor of 5 gallon. The characterization of solid phase products performed by thermo-gravimetric analysis, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental analysis (C, N, H, S). The physical-chemistry properties of solid phase analyzed in terms of dry matter (DM), total organic content (TOC), and ash. The yields of solid and gas phases decrease linearly with decreasing biomass-to-H2O ratio, while that of liquid phases increases linearly. For constant biomass-to-H2O ratio, the yields of solid, liquid, and gaseous reaction products varied between 52.97 and 35.82% (wt.), 44.84 and 54.59% (wt.), and 2.19 and 9.58% (wt.), respectively. The yield of solids decreases exponentially by decreasing the reaction time, while the yields of liquid and gas phases increase exponentially. For constant biomass-to-H2O ratio, TG/DTG curves shows that reaction time of 60 minutes was not enough to carbonize corn Stover. For constant reaction time, TG/DTG curves shows that increasing the H2O-to-biomass ratio worse the carbonization of corn Stover. For constant biomass-to-H2O ratio, the SEM images show the main morphological structure of the corn Stover remains practically unchanged, while for constant reaction time, SEM images show that plant microstructure retains part of its original morphology, demonstrating that a decrease on biomass-to-H2O ratio worse the carbonization of corn Stover. For constant biomass-to-H2O ratio, the EDX analysis shows that the carbon content in hydro-char increases with reaction time, while for constant reaction time, the carbon content decreases with increasing biomass-to-H2O ratio. The kinetic of corn Stover degradation was correlated with a pseudo-first order exponential model, exhibiting a root-mean-square error (r2) of 1.000, demonstrating that degradation kinetics of corn Stover with hot compressed H2O, expressed as hydro-char formation, is well described by an exponential decay kinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.