Nitrogen pollution from agriculture is a major challenge facing our society today. Biological nitrogen fixation is key to combat the damage that is caused by synthetic nitrogen. Azolla spp. are ideal candidates for fast nitrogen fixation. This study aimed to investigate the optimal growth conditions for Azolla pinnata R. Brown. The growth conditions that were investigated included the growth medium type and strength, light intensity, the presence/absence of nitrogen in the medium, pH control, and humidity. Higher light intensities increased plant growth by 32%, on average. The highest humidity (90%) yielded higher growth rate values than lower humidity values (60% and 75%). The presence of nitrogen in the medium had no significant effect on the growth rate of the plants. pH control was critical under the fast growth conditions of high light intensity and high humidity, and it reduced algal growth (from visual observation). The optimal growth rate that was achieved was 0.321 day−1, with a doubling time of 2.16 days. This was achieved by using a 15% strength of the Hoagland solution, high light intensity (20,000 lx), nitrogen present in the medium, and pH control at 90% humidity. These optimised conditions could offer an improvement to the existing phytoremediation systems of Azolla pinnata and aid in the fight against synthetic nitrogen pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.